Lightweight Convolutional Approaches to
Reading Comprehension for SQuAD

CS 224N Final Project
Benjamin L. Penchas Toby R. Bell
Stanford University Stanford University
bpenchas@stanford.edu tbell@stanford.edu
Abstract

Current state-of-the-art reading comprehension models rely heavily on recurrent
neural networks. We explored an entirely different approach to question
answering: a convolutional model. By their nature, these convolutional models
are fast to train and capture local dependencies well, though they can struggle
with longer-range dependencies and thus require augmentation to achieve
comparable performance to RNN-based models. We conducted over two dozen
controlled experiments with convolutional models and various
kernel/attention/regularization schemes to determine the precise performance
gains of each strategy, while maintaining a focus on speed. In the end we
ensembled three of our models: crossconv (dev F1: 0.5398), attnconv (dev F1:
0.5665), and maybeconv (dev F1: 0.5285). The ensembled model was able to
achieve dev F1 of 0.6238 using the official evaluation script. Our individual
convolutional model crossconv was able to exceed the performance of the
RNN-plus-attention baseline by 25% while training 6 times faster.

1 Introduction

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset introduced by
Rajpurkar et al., 2016. It contains 100,000+ question-answer pairs on 500+ Wikipedia articles.
Each question-answer pair contains a question of roughly 30 words with a correct answer that is a
span of text from the corresponding reading passage. For example, take the following
question-answer pairs on Nikola Tesla’s Wikipedia page:

Nikola Tesla (Serbian Cyrillic: Hukona Tecna; 10 July 1856 — 7
January 1943) was a Serbian American inventor, electrical
engineer, mechanical engineer, physicist, and futurist who is
best known for his contributions to the design of the modern
alternating current (AC) electricity supply system.

In what year was Nikola Tesla born?
Ground Truth Answers: [1856] [1856] [1856]
Prediction: [1856]

What was Nikola Tesla’s ethnicity?
Ground Truth Answers: [Serbian] [Serbian] [Serbian]
Prediction: [Serbian]

Figure 1: Passage about Nikola Tesla, and questions about it with ground truth
answers and predictions made by SLQA+ (ensemble) from Alibaba iDST NLP.

Current state-of-the-art models, as judged by the SQuUAD leaderboard, are predominantly RNNs
with some unique attention mechanism. While each of these models has a distinctive approach to
attention, at their core they are all RNNs with LSTM/GRU cells.

In contrast to these architectures, we wanted to explore convolutions applied to text. By their
nature, convolutions are fast to train and infer since, unlike RNNSs, they can process tokens in
parallel.

2 Approach and related work

The inspiration for a convolutional approach without RNNs came from Wei Yu et al. [2]. By using
convolutions instead of RNNs, Wei Yu et al. were able to process tokens in parallel and train
much faster. Their final model was able to achieve accuracy on par with recurrent methods while
training 13 times faster. The convolutional method outlined in Wei Yu et al. [2] relies heavily on
modular encoder blocks that employ positional encoding, convolutional layers, layer norm, and
residual connections.

We quickly realized, however, that we would not be able to fully emulate Wei Yu et al. [2]. Even
a drastically simplified version of their encoder block includes ~700,000 parameters, and their
model uses 8 of these blocks. Combining that with the large memory demands of attention
mechanisms, even the most capacious Azure GPUs we could use ran out of memory once we
initialized a few of these encoder blocks. We thus focused instead on simply attempting to
outperform the provided RNN baseline with a lightweight convolutional model.

At a high level, solving the reading comprehension task requires an understanding of the context,
the question, and how they relate. Our approach was to use convolutions to capture local
dependencies and attention to capture global dependencies as well as how the question relates to
the context. To precisely evaluate what approaches to a convolutional model would produce the
best results, we conducted successive controlled experiments to assess the value of any given
change. By changing only one aspect of our model between most experiments, we gained a
granular understanding of what worked well. Ultimately, this allowed us to selectively combine
our most promising modifications to produce several successful lightweight convolutional models.

3 Experiments

In total, we trained 26 different models, though a few of them failed to provide us with useful
conclusions due to technical shortcomings (mostly limited GPU memory) and scientific errors on
our part (being unable to debug failed models due to changing too many variables at once).
Performance measures of a selection of our most illuminating models are given below. EM and F1
scores were measured on the SQUAD dev set. Train time is defined as the amount of time that

passed during training before each model achieved its highest F1 score. For further details,
summaries of all 19 experiments that yielded informative results are given in Table 3 at the end of
this paper.

Table 1: Performance of selected models

TRAIN
NAME EM F1 TIME
baseline* 02930 04007 6h15m
tpul 00* 02955 04061 6h35m
simpconvy 0.1614 0.2333 33m
triconv 0.1935 0.2740 1h2m
windowconvl 00 0.2075 0.2922 1h 18m
narrowconv 0.2038 0.2822 1h 44m
shareconv 02815 0.3922 1h 46m
combconvl (00 03721 05114 1h 11m
maybeconv 0.3912 0.5285 1h 58m
crossconv 0.3990 0.5398 1h 34m

* denotes an RNN-based model.

From these cursory performance metrics, it is clear that convolutional models train faster than
RNN-based models. Even with significant augmentation, our convolutional models achieve their
highest F1 score roughly 4 to 5 times faster than the baseline RNN model, which itself constitutes
only a simple implementation of such a model (improved RNN models would take even longer to
train). In the case of our later models, the achieved F1 score also exceeds the given RNN model’s
performance by roughly 25%.

It is also clear that convolutional models tend to perform worse than RNN-based models on the
SQuAD task. For example, simpconv, our baseline-equivalent convolutional model (created by
simply replacing the RNN encoder in baseline with two 4-layer CNNs), achieved a maximum F1
score only slightly greater than half of the baseline model’s F1 score. Our experimentation thus
focused on identifying specific enhancements that would allow convolutional models to compete
with the given RNN-based approach. Our findings are described below.

3.1 Model encoding

Wei Yu et al. [2]’s model uses “input encoder” blocks to encode their question and context prior to
applying attention between them. The given RNN baseline model and our simple convolutional
simpconv both use a similar mechanism, in the form of a bidirectional LSTM and 4-layer CNN,
respectively. Wei Yu et al. [2] also uses “model encoder” blocks affer after context-to-question
attention flow. In their model, these are fairly hefty: 3 applications of 7 blocks, each consisting of
2 convolutional layers and self-attention.

To keep our model lightweight, we used another instance of our generic encoder block (4-layer
CNN) after applying context-to-question attention. This #riconv model outperformed its
predecessor simpconv model by 17.4%, achieving an F1 score of 0.2740 over simpconv’s score of
0.2333. At this point, it is worth noting that both models still lag far behind the RNN-based
baseline.

3.2 Wide kernel output layers

The baseline output layer works by simply applying a fully connected layer to the output of the
context-to-question attention step. It then performs two projected softmax normalizations across
the encoded context sequence to obtain two different distributions p,,, and p,,, (these are
argmax-ed for the prediction step). This offers no room for context-awareness when trying to
label the start/end of a span, since all transformations happen at the level of individual words. We
decided to replace this output layer scheme with one that could take into account information
about neighboring words.

Our windowconv100 model uses two convolutional layers to predict the start and end positions.
These have a single filter (they must output only a single logit value) but their kernel width is 20,
allowing them to look across a span of 20 words to evaluate how likely a given word is to start or
end the true answer span. With such a wide kernel, in order to avoid overfitting and creating too
many parameters, we precede this step with a fully connected layer (as does the baseline) that
projects the hidden sequence representation down to 20 dimensions (from 200 in
windowconv100), or 128 in our later models). Using this wide windowed output layer achieved an
F1 score 0f 0.2922, a ~6.6% improvement over the 0.2740 F1 of its parent model, triconv.

Another small augmentation we made to our output layer in our final models was to constrain the
end position to come after the start position at prediction time. This replaced the naive argmax we
had carried over from the baseline model into windowconv100, which predicted out-of-order span
boundaries roughly 17% of the time.

3.3 Avoiding overfitting

Our convolutional models consistently achieved F1 scores that were roughly 0.2 higher on the
train set than on the dev set. This consistent discrepancy indicated overfitting, and we attempted
various methods of regularization to address it. Standard mechanisms like dropout and L2
regularization closed the gap between train and dev performance, but at large cost to trainability.
Even after augmenting our training with layer normalization (in the style of Ba et al. [3]) and
various optimizer tweaks, using these regularization strategies resulted in training times greater
than the baseline RNN model, which did not align with our goals of finding a lightweight,
fast-to-train model that performed well. However, two methods did work well, and those were
reducing the width of the kernel in our convolutional layers, and reusing weights between the
question and context input encoders.

3.3.1 Kernel narrowing

Though Wei Yu et al. [2] used 7-wide kernels in their ultra-deep CNN architecture, they also used
various strategies to increase the diversity of their training data. Since we were not focused on
augmenting our training data, we found that decreasing the kernel with to 5 and ultimately to 3
increased our dev/F1 and dev/EM scores by making it more difficult for the model to simply
memorize N-grams from the training data. Our narrowconv model achieved an F1 of 0.2822 over
its ancestor model, #iconv, which achieved only 0.2740. This was also accompanied by a ~10%
reduction in model size (a welcome bonus). We believe that smaller windows did not hurt the
network’s ability to process local dependencies because the use of multiple stacked convolutional
layers still allowed word information to flow several steps to the left or right between layers.

3.3.2 Sharing weights

Initially, we trained our triconv model to use two distinct convolutional input encoders—one for
the question and one for the context. Our thinking was that since questions and statements are
syntactically and semantically in opposition to one another, it would be beneficial to allow the
model to learn to process them differently. In practice, however, it simply facilitated overfitting on
each one. By using a single convolutional encoder for both the question and the context in our
shareconv, we not only reduced the size of our model by ~25%, we also significantly increased its
dev/F1 score to 0.3922 from 0.2740 in triconv. After the result of this experiment, it became clear
that maximizing the network’s ability to generalize was crucial. Using a single input encoder
accomplishes that by forcing the model to learn a single language model for contexts and
questions. Any structural differences between “statements™ and “questions” would then be learned
in the deeper layers of the network. This was the first model we trained that achieved performance
on par with the given RNN-based approach.

3.4 Self-attention

Since each convolutional layer operates on only a small local neighborhood, one should expect a
purely convolutional model to fare poorly at recognizing longer-range dependencies within the
context and question. To overcome this weakness, we implemented multi-head self-attention in
our encoder blocks, as outlined in Vaswani et al. [1], as a way to bridge gaps between spatially
disparate but semantically related words within a single context or question. We followed their
approach exactly (with one exception, outlined in section 3.4.1 below), though we used fewer
heads (only 4, instead of their 8), and each head projected to a space of dimensionality 32 instead
of 64. We did this to both decrease training time and memory requirements and to avoid
overfitting, as outlined above. Adding self-attention to our maybeconv model produced a
performance gain of ~3.3%, increasing F1 to 0.5285 from the 0.5114 F1 achieved by its parent
model, combconv100.

3.4.1 A note on bypass connections

The way that we integrated self-attention into any given model strongly affected our model’s
ability to train. In our first model to attempt self-attention, triconv_attn, we made the mistake of
treating self-attention’s output as a monolithic transformation, like a fully connected or
convolutional layer. Given the output matrix X of our 4 convolutional layers, we computed the
encoder output matrix Y using multi-head attention as follows:

Y = SelfAttention(X) .

This worked very poorly, due to the behavior of self-attention on sequences containing
unique/distinctive semantic content. Since unique/specific semantic content is unlikely to be
considered “similar” to other words in the sentence (and even to itself, owing to self-attention’s
use of different projection matrices for each head’s key and query vectors), its attention output will
become very small or zero. This proves too destructive to semantic information during forward
propagation for the network to be able to perform well. It also greatly slowed down training
progress, since the low similarity scores of distinctive words create very small gradients. Once we
discovered this, we realized that the majority of models using self-attention, including Wei Yu et
al. [2], applied it through a residual connection:

Y = SelfAttention(X)+ 7Y ,

allowing a full copy of the original convolutional output to pass through. This solved our gradients
problem, but still seemed too diluting to the output to allow later stages of the model to perform
well. We then switched to dense connections, inspired by the work of Huang et al. [4] as an
alternative to ResNets residual connections. These concatenate the attention output with the
convolutional output:

Y = [SelfAttention(X), X].

This served to both maintain enough detail from the CNN output during forward propagation and
allow gradients to flow around the self-attention layer without diminishing. This approach enabled
the performance gains found in our maybeconv model, mentioned above.

3.5 Bidirectional attention

Wei Yu et al. [2] also introduced us to bidirectional attention—combining context-to-question
attention and question-to-context attention using a trilinear similarity function. This is an approach
originally described in Seo et al. [5] that not only uses the context to attend to relevant locations in
the question, but vice-versa, allowing the question to attend to relevant portions of the context.
This question-attended version of the context is then re-attended by the original context to produce
a final representation.

While self-attention used projections and a simple dot-product similarity metric, Seo et al. [5]
uses no projections and a single trainable “trilinear” similarity function:

f(q.¢) = wolg. ¢, qoc]

Here w, is a learned vector and © represents element-wise multiplication. The above trilinear
function is used to compute a similarity matrix S € R”” between each pair of context (length »)
and question (length m) words. Using the softmax function, they then separately normalize along
the rows and columns of S, yielding S and S respectively. Lastly they compute the
context-to-question attention as 4 = SO" and the question-to-context attention as B = S §C”,
where Q and C represent the encoded question and context.

Replacing the naive attention mechanism in the RNN baseline with this bidirectional mechanism
achieved an F1 score of 0.5398 in crossconv, representing a ~5.6% improvement from the 0.5114
F1 achieved by its parent model, combconv100.

Besides

Death

Wish| |
Coffee |

,
how

many

other|
competitors| [|

participated |l [| |
in

the
contest
?

S p

a
"

Small
Business

of]

QuickBooks
sponsored
Big

Game
contest
30-second
commercial
aired

free

charge
courtesy

of]
QuickBooks
out

nine

other
contenders
from

across

the

United
States

for

the

free
advertisement

Figure 2: Visualized context-to-question attention weights.

As seen in Figure 2, our final model, attnconv, which uses both self-attention and bidirectional
cross-attention, learned to attend to relevant parts of the question when encoding the context. We

see that “Death Wish Coffee” strongly attends to “Death Wish Coffee” which makes sense given
the unique nature of that name. We see that “nine” in the context, which happens to be the correct
answer span, attends to “how” and “many” which suggests attnconv understands numbers to be
good answers to questions like “how many.” We also see “contenders” attends to “other,”
“competitors,” and “participated” which suggests an understanding of the notion of competitors to
Death Wish Coffee. Note that we see some blurring here (e.g. “contenders” attending equally to
“competitors” and “participated”) due to previously applied convolutional layers.

4 Combining successful models

After our extensive experimentation, we combined features that we had found to work well. This
allowed us to produce several successful models for our goals. For example, our crossconv model
consists of features from simpconv, triconv, narrowconv, windowconv, shareconv, plus
bidirectional attention (from Seo et al. [5]) and other extrapolative improvements. As can be seen
in Figure 3, this combined crossconv model compounded the successes of its component features,
allowing a purely convolutional approach to exceed the RNN baseline’s performance while being
smaller and faster to train and run.

0.6
== Ccrossconv

0.5 == parrowconv
0.4 w= triconv
=03 == indowconv

[
0.2 = simpconv
01 == shareconv
0.0
0 5,000 10,000 15,000
Step

Figure 3: Effects of combining successful models into crossconv.

4.1 Ensemble methods

Ensemble learning helps improve predictions results by combining several pretrained models into
one meta-model. To combine everything learned by the best models in Table 1, we chose to
pursue ensemble methods that combine these models at prediction time. To do so, we created a
confidence metric that each model outputs along with every prediction. Our ultimate heuristic for
confidence was p,,,,(start) p,,Aend). Our ensemble model, then, predicts as follows:

Predicted span

argmax
over confidence scores

I I I
(maybeconv) CCFOSSCO"V) (attnconv)

I

s
Input data

Figure 4: Ensemble combination of performant models.

First, it runs evaluation on pre-trained maybeconv, crossconv, and attnconv models to obtain their
prediction-confidence pairs. Then, for each example, it chooses the prediction that has the highest
confidence. This strategy outperforms any one of the component models taken individually,
ultimately achieving our highest F1 score of 0.6238.

Table 2: Performance of individual and ensemble models

NAME EM F1
attnconv 0.4494 0.5665
maybeconv 0.4628 0.5739
Ccrossconv 0.4743 0.5835
ensemble 0.5195 0.6238

4.2 Throughput

One focus of our research was building lightweight, fast models. The time complexity of
prediction using our final attnconv model is O(C + Q)H* + (C* + O?)H), where C is the context
length, O is the question length, and A is the hidden size (note that the major slowdown here is the
attention mechanism). As seen in Figure 5, our most performant models had few parameters and
high throughput. We achieved our goal of producing lightweight fast-to-train models that perform
reasonably well.

0
. 600.
= 0
o
@
5
g 400.
¥ 0
g
B
i »
2 200.
= 0
0.0

0 1000000 2000000 3000000 4000000
No. parameters

Figure 5: Time/space complexity visualization
(bubble size corresponds to F1 score)

5 Further work

To further improve the model, we believe incorporating character level embeddings would work
well. Wei Yu et al. successfully concatenated pre-trained word embeddings with the output of
convolving over trainable character embeddings for the word’s characters. We believe these
trainable character embeddings would increase performance of the model without greatly slowing
down training.

Wei Yu et al. also successfully incorporated backtranslation as a data augmentation strategy, and
we believe this strategy would work well for our model; since our model converges very quickly,
it could easily be trained on a much larger dataset. To augment the dataset, we would employ a
translation model from English to some other language and back again, allowing us to get
paraphrases of the question-answer pairs in the original dataset.

References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. &
Polosukhin, I. (2017) Attention Is All You Need. In Neural Information Processing Systems, 2017.
arxiv.org/abs/1706.03762.

[2] Wei Yu, A., Dohan, D., Luong, M., Zhao, R., Chen, K., Norouzi, M. & Le, Q.V. (2018) Fast
and Accurate Reading Comprehension by Combining Self-Attention and Convolution.
openreview.net/forum?id=B14T1G-RW.

[3] Ba, J.L., Kiros, J.R. & Hinton, G.E. (2016) Layer Normalization. In CoRR, 2016.
arxiv.org/abs/1607.06450.

[4] Huang, G., Liu, Z. van der Maaten, L. & Weinberger, K.Q. (2018) Densely Connected
Convolutional Networks. In /EEE, 2017. arxiv.org/abs/1608.06993.

[5] Seo, M.J., Kembhavi, A., Farhadi, A. & Hajishirzi, H. (2016) Bidirectional Attention Flow for
Machine Comprehension. In CoRR, 2016. arxiv.org/abs/1611.01603.

10

Supplementary material

Table 3: Summary of all informative experiments
(eps = examples per second)

NAME / DESCRIPTION MOTIVATION RESULTS

baseline | Single bidirectional GRU input Given model. 0.4007 F1

encoder, context-to-question attention, one F.C. 521,802 params

model encoder layer. Constant GloVe 100 195.7 eps

embeddings.

tpul00 | Derived from (D.F.) baseline. Remove noise introduced 0.4061 F1

Constant GloVe 100 embeddings, with trainable by constant random 522,002 params

<PAD> and <UNK> vectors (T.P.U.). <UNK> and <PAD> 195.1 eps
vectors.

tpu300 | D.F. tpul00. Constant GloVe 300 Compare effects of large 0.3947 F1

embeddings instead of 100, with T.P.U. versus small embeddings 762,402 params
on overfitting. 187.2 eps

simpconv | D.F. baseline. 2 CNNs (4 layers each, Establish a baseline for 0.2333 F1

kernel width 5, ReLU), one each for the context CNN-based performance. 1,882,602 params

and the question, instead of GRU. GloVe 300. 670.8 eps

triconv | D.F. simpconv. Adds another CNN (4 Process context-question ~ 0.2740 F1

layers, kernel width 5, ReLU) as a model encoder relationship after applying 2,723,402 params

after context-to-question attention. GloVe 300. attention between them. 451.7 eps

triconv_attn | D.F. triconv. Multi-head Allow encoders to resolve 0.1932 F1

self-attention (4 heads, head size 50, residual long-range dependencies 1,882,602 params

connections) after 2 conv layers in each encoder. using attention. 237.5 eps

triconv_reg | D.F. triconv. L2 loss across all Reduce overfitting by 02723 F1

trainable variables, and dropout after the final regularizing conv kernels 3,203,402 params

feed forward layer of an encoder block. GloVe and dropping out. 407.5 eps

300.

windowconv100 | D.F. triconv. Replaces baseline Widen context-awareness 0.2922 F1

output layer with two wide convolutional layers ~ when predicting start and 2,647,822 params

(kernel width 20) for start and end. GloVe 100. end positions. 461.8 eps

attn2 | D.F. triconv_attn. Self-attention after all 4 Resolve backprop 0.2747 F1

convolutional layers instead of between them. challenges from 3,204,602 params

Uses layer norm before self-attention. GloVe triconv_attn. 228.4 eps

300.

shareconv | D.F. triconv. Shares parameters Reduce model size and 0.3922 F1

between the two input encoder blocks. overfitting by learning only 1,822,402 params
one language model. 4422 eps

windowconv300 | D.F. windowconvl(00. GloVe Compare effects of large 0.2824 F1

300 instead of 100. versus small embeddings 2,727,822 params
on overfitting. 440.7 eps

narrowcony | D.F. triconv. Reduces kernel width Discourage memorizing 0.2822 F1

from 5 to 3 in all convolutional layers. GloVe n-grams from the training 1,763,402 params

300. set to reduce overfitting. 564.7 eps

11

combconv100 | Merges successful models
(shareconv, windowconv100, narrowconv

tpul 00). Hidden size 150. Constraint: start < end.
combconv30 | D.F. combconv100. GloVe 50 with

T.P.U.

dropoutconv | D.F. combconvi00. GloVe 100
with T.P.U. Dropout (0.5) applied before every
convolutional layer.

maybeconv | D.F. combconvI00. Hidden size
128. Multihead self-attention (4 heads, 32
channels each) with dense bypass connections.

deepconv | D.F. maybeconv. Adds two more
encoder blocks that process blended
representations produced by basic attention.

crossconv | D.F. combconv100. Reduces hidden
size to 128. Uses bidirectional attention with
trilinear similarity. GloVe 100 with T.P.U.

attnconv | D.F. crossconv and maybeconv. Both
self-attention and bidirectional attention. 8
self-attention heads. GloVe 100 with T.P.U.

12

Combine successes of
previous convolutional
models.

Reduce overfitting with
smaller word vectors.

Reduce overfitting by
regularizing the network
with dropout.

Better resolve long-range
dependencies using
self-attention.

Increase the power of the
model by going deeper, to
better fit the train set.

Increase capability of

context-question attention.

Combine both of our
successful attention
mechanisms.

0.5114 F1
650,322 params
641.4 eps

0.5101 F1
642,722 params
649.4 eps

0.2721 F1
650,322 params
546.9 eps

0.5285 F1
640,566 params
392.1 eps

0.2342 F1
4,485,402 params
259.8 eps

0.5398 F1
492,982 params
451.8 eps

0.5242 F1
788,406 params
335.2 eps

Start probabilities (softmax)

Figure 6: Detailed model diagram for attnconv.

I’rcdi[ction argmax p(start) p(end)
|

s.t. start > end

End probabilities (softmax)

|

Output layer

Model encoding

Attention flow

Input encoding

Conv olutlon Conv olutlon
single 20 wide kernel single 20 wide kernel

Fully-connected layer
(reduction to dimensionality 20 j
1
O00ooooooooo
00000000000
O00ooooooooo
O00ooooooooo
P.—.

Multi-head self-attention)

«— Dense bypass connection

o
o
0
C

128 filters
3 wide kernels

I

Bidirectional cross-attention
using the trilinear similarity function

| |
000000 000000000000
O000o00o O00000OO0OO0O0O0OO
Oo0o0o0oo0o 0000000 DOO0O0OO0OO
O000O00 0000000 DOO0O0OOO
— ——
(Multi-head self-attention)

—I I—

« Dense bypass connection

CNN
4 layers
128 filters
3 wide kernels

N

I

Embedding

000000 000O000O00oBeonoo
000000 0000000o0oBeo0oo
000000 00000000B000

1 1

(Embedding using GloVe 100)

I

Question

Context

13

Trainable <PAD> and
<UNK> vectors

