Training Dialog Agents to Negotiate

Bogac Kerem Goksel Ishan Somshekar

Abstract

We explore different methods of applying rein-
forcement learning to train agents that can nego-
tiate for resources using natural language dialog.
We base our work off of previous work by Face-
book AI Research on a dataset they collected and
models they trained on this dataset. We investigate
the role of Reinforcement Learning in particular
within the multi-stage training process the origi-
nal paper described, and also experiment with a
pure RL agent that is not pretrained on the human
dataset.

1. Introduction

Negotiation is an interesting task as it requires both natural
language understanding, some degree of goal-based plan-
ning and natural language generation. A good negotiation
agent needs to be able to understand offer it receives and be
able to verbalize its own offers coherently and convincingly,
but it also needs to be able to reason about the valuation of
resources and plan negotiation tactics to be able to negotiate
successfully. Furthermore, negotiation also offers a good
multi-agent task as it is essentially competitive, but requires
eventual compromise and agreement between the agents for
either to receive any reward.

The original paper we base our work off of is ”Deal or No
Deal? End-to-End Learning for Negotiation Dialogues”,
published by Lewis et. al in 2017 (Lewis et al., 2017). In
this paper, Lewis et al collect a human-to-human negotiation
dataset built on a very simple negotiation game, and train
an end-to-end sequence-to-sequence dialogue agent using
supervised learning. They then experiment with several
techniques to improve these agents including Reinforce-
ment Learning, where they use policy gradient methods
to train the parameters of their seq2seq model using the
REINFORCE algorithm.

In this paper, we investigate the effectiveness of using RL
in this context by analyzing its performance both in a pure
RL agent that has a separate negotiation module that only
generates numerical offers then uses template strings to utter
in English, and on top of the pre-trained seq2seq model.

2. Background and Related Literature

While there has been work on negotiation using reinforce-
ment learning in the past, our work is mostly about repli-
cating the results in Lewis et al’s paper, and investigating
performance aspects in their work.

3. Data Collection and Processing
3.1. Task Description

Lewis et al propose the following task for testing the negoti-
ation capabilities of agents. In this setting, there exist three
distinct resource types (book, ball and hat in this instance).
Each episode starts with some fixed number of these re-
sources ~up for grabs”. Each resource type has some value
to each agent, and these values are only known to the agent
itself. The task for the agents is to choose an allocation of
these resources between themselves that both of them can
agree upon. Upon agreement, each agent’s reward is the
number of each item type they received times their personal
value for that item. If they cannot reach agreement, neither
agent receives any reward. The agents can have as many
dialog turns as they want, until one of the agents decides
that the conversation is over. At that point, both agents
output their best guess at what was the final agreement. If
their guesses at the final agreement match, they get a reward,
otherwise no reward is given.

More formally, both agents get a context vector at the
beginning of each episode which includes the counts of
each types of item and the unit value of each item type to
them. (i.e. 1 book: value 5, 3 hats: value 0, 2 balls: value 1)
One of the agents is randomly selected to make the first
utterance. From then on, each agent gets fed the utterance
of the other agent at each dialog turn and outputs their
own utterance. On top of any natural language utterances
agents may output to haggle, they can also output a special
jselection;, token which indicates they think the negotiation
is over.

Once an agent emits this ending token, the agents output
their final allocation of the items, and only if their
allocations agree do they actually allocate the items and
each get their respective rewards (count of each item type
they got times the value of that item type to them).

Training Dialog Agents to Negotiate

3.2. Dataset

Lewis et al have run this task between humans on Mechani-
cal Turk to create a dataset of human-to-human negotiations.
The dataset includes 6000 conversations of the form:

<input>212331 </input>

<dialogue>YOU: I'd like the THEM: YOU: ...
<selection></dialogue>

<output>item0=2 item1=2 item2=0 item0=0 item1=0
item2=3 </output>

<partner-input>2 0 1 2 3 5 </partner-input>

We see that each point in the training data contains infor-
mation about the initial amount of resources available to
the agents and the respective values of the resources to the
agents (these values can be different) in the <input>and
<partner-input>>tags, the entire negotiation dialog in the
<dialogue>tag, and the final agreed upon allocation of re-
sources in the <output>tag.

3.3. Data Processing

We collected information about trends in the data. The
distribution of total dialog lengths in words is seen below.

Number of words in dialogue

1000

600 1

Frequency

400 -

200 -

100 120 140 160 180 200 220 240
Word Count

0 20 40 60 80

Figure 1. Frequency of the lengths of dialog in words

We see that the human dataset peaks at around 15-20 words
in a negotiation before both parties find an agreement or
break off negotiations. However, there is a significant tail
to this data, as dialogs between 10 words and 70 words are
still relatively frequent in the data.

Additionally, we also checked to see how many utterances
back and forth between the two parties was necessary before
they came to a decision. Here we plot the distribution of
dialog lengths in utterances by either party.

Number of utterances in dialogue

4000 -

3500 -

3000 -

2500 1

N
=]
o
S

Frequency

1500 A

1000 A

500 -

8 10 12 14 16 18 20
Utterance Count

Figure 2. Frequency of the lengths of dialog in utterances

We see that the majority of negotiations are completed after
each agent has spoken four times. There are some outlying
data points from longer conversations because some human
speakers will begin with “hello” or "how are you doing”
and ”I'm fine, how are you?”

4. Approach
4.1. Language Model Agent

Lewis et al base off their work on a supervised language
model agent. This agent is trained on the human-to-human
dataset, and it is only trained to act as a language model (i.e.
predict what a human would’ve said next given the current
state of the dialog and the initial context). As such, this
agent does not incorporate the actual rewards it gets from
the game at all.

The architecture of this dialog agent involves the use of a
two-layer fully connected neural net to encode the initial
context into a dense representation alongside one-hot word
embeddings, which are used to encode the conversation his-
tory. During conversation, it concatenates the embeddings
for the context and words in the conversation and feeds this
into an encoder GRU (concatenating the same context em-
bedding for each word in the conversation history). It then
stores the outputs of this GRU as a representation of the
conversation history.

To output utterances, it uses another GRU to go over the
conversation history representations and attend over it using
a fully connected attention network. Finally this conversa-
tion representation with attention is concatenated with the
initial value context and is fed into a decoder network that
outputs log probabilities over all possible offers that can be
made.

Training Dialog Agents to Negotiate

The simple dialog agent samples from these log probabili-
ties with an e-greedy policy to output utterances, no part of
this system has an explicit representation of the offers being
made, so the model’s parameters are being trained purely
on accuracy of language.

4.2. Reinforcement Learning Agent

Lewis et al then fine tune the language model agent by
framing the task as a reinforcement learning task where the
language model becomes the policy parameter. They use
the REINFORCE algorithm to further train the parameters
of the language model after episodes of self-play against
another agent.

To enable effective self-play, two agents are initialized with
the language model, but one of the agents is kept fixed
through self-play episodes while the other agent’s policy
(dialog model) is updated after every episode. In this setting,
the training agent no longer considers the original dataset’s
language model in its optimization, and only optimizes for
the task reward.

The policy gradient is more specifically applied as the fol-
lowing: If we set r be the final score for A, T" be the di-
alog length, i a running average of completed rewards,
and y a discount factor, the reward R for an action x; is

R(zy) = Y77 (r — p)

4.3. Template Filling Reinforcement Learning Agent

To test the effectiveness of a pure reinforcement learning
agent in negotiation performance, we implemented the fol-
lowing agent that is trained only using Reinforcement Learn-
ing, but that nevertheless can consistently make sensible
English utterances.

The agent does not attempt to learn the nuances of produc-
ing human language, instead focusing on learning how to
negotiate for an ideal allocation of resources. Our goal was
to was to explore whether end-to-end language learning was
necessary from a purely negotiation optimizing standpoint.
To achieve this, we constrained the policy of the agent to
only outputting a numerical allocation it wanted to propose
to the other side (1 book for me, 1 ball for me, 0 hats for me),
and used predetermined template strings to convert these
to utterances. Our agent still had to read the conversation
history to be able to respond, so we kept that part as part
of the policy as well. Our final architecture for this model
looked like the following:

Our Template-Filling RL agent first reads the utterances
of the other agent using a GRU and a single forward
pass through the data. It then concatenates the context
embedding to the last hidden state of this GRU. This new
embedding is fed into a fully-connected layer and then a
softmax layer.

At this point, the agent uses the e-greedy technique to

Softmax

i
99

)

Figure 3. The architecture of our Template Filling agent

balance selecting the allocation of resources that produces
the highest probability and reward and a random allocation.

The agent then fills out a basic string template with this
allocation.

The template string that we used was:

I want [] books, [] hats, and [] balls. You can have the rest.
The agent could also output Deal , No Deal, or ”<selection
>” to terminate the episode.

5. Experiments and Results
5.1. Initial Tests

The Template-Filling agent did not perform well at all when
pitted against the language model agent; the two agents
found agreement only 2% of the time. This was better than
random, which would have been 0.8%, but still was not high
enough to lead to consistent rewards. We felt that this was
not necessarily indicative of a failure of the specific archi-
tecture, but rather a symptom of the issues that could arise
from the limitations of applying reinforcement learning to
tasks related to natural language dialog.

To get a better understanding of these limitations, we exper-
imented with Lewis et al’s vanilla RL agent and explored
its performance.

5.2. Performance

We found interesting trends when looking at the results of
the language model + RL Agent when it trained against a
fixed language model agent.

As more training episodes went by, the rate of agreement
increased dramatically at first to about 20%, but then began
to fluctuate before falling. Since rewards are only given out
when there is an agreement, the graph for reward attained for
either party is almost identical with the rate of agreement.

Training Dialog Agents to Negotiate

Percent Agreed

201

194

18 A

17 A

16

154

500 1000 1500 2000 2500

o A

Figure 4. The percentage of negotiations agreed for RL vs Simple
Dialog against training iterations

Combined Reward

3.19

3.0 A

2.9 A

2.89

2.7 A

2.6 A

2i5

500 1000 1500 2000 2500

o A

Figure 5. The combined reward attained for both agents against
training iterations

Sentence Length

251

201

151

101

500 1000 1500 2000 2500

o o

Figure 6. The average length of a single utterance against training
iterations

Dialog Length

500 1000 1500 2000 2500

o A

Figure 7. The average number of utterances per episode against
training iterations

Training Dialog Agents to Negotiate

Pct Utterances Fully Matching Human Utterances

0.50 -

0.45 -

0.40 -

0.35 A

0.30 -

0 500 1000 1500 2000 2500

Figure 8. Similarity of human and agent produced utterances
against training iterations

To further explore why this rate dropped drastically after
about 2500 data points, we looked at the output negotiation
sentences that the agents were producing. We see that the av-
erage number of words in a dialogue increases exponentially
as we continue to train. Additionally, the number of dialog
turns also increases. Both these values begin at around simi-
lar figures to the human statistics from the training data, but
quickly increase until the average length of sentence and
conversation are more than 3 times the human average.

Finally, we examined how these utterances that were being
produced compared to actual human utterances in the
data. The utterances were no longer really decipherable
or understandable from a qualitative perspective (where
examples like i am all hats i am am am want want
want hats” became more and more common)

Partially due to their longer length, they were also no longer
quantitatively similar to human utterances. As the RL agent
was trained more and more, the more “original” utterances it
started to come up with (i.e. an utterance that wasn’t found
at all in the human dataset).

While these metrics might be interpreted as the agent be-
coming more creative and learning to utter sentences beyond
copying over utterances from the human dataset, both our
qualitative analysis and the rapid fall in agreement rates
suggest divergence from natural language. It is also worth
noting that while divergence might be expected for the agent
whose parameters are being updated, the metrics exponen-
tially diverged for both our agents, suggesting the fixed
agent was also showing divergent behavior.

6. Evaluation

This problem suffers from a common problem in RL that
rewards are given only at the very end of a long episode, and
only somewhat good policies can achieve any reward (as it
requires being able to agree on an allocation and not end-
ing the dialog before an agreement is found). Furthermore,
since the task is somewhat cooperative, the RL agent’s per-
formance is bounded by the competency of the fixed agent
it is communicating with.

In the case of the template-filling RL agent, we believe the
failure was due to both the sparsity of the rewards, and the
incompatibility with the fixed agent. Since our agent ”spoke”
in repetitive templates in a pattern that wasn’t common in
the human dataset the fixed agent was trained on, the fixed
agent in many cases could not decipher the otherwise valid
English our agent was outputting. As such, the RL agent
was not getting proper feedback from its environment, and
the likelihood of getting a reward to positively train its policy
was even lower.

We see this to a certain extent in the RL fine tuning of
the language model agent as well. This case mitigates the
latter problem a little bit since the RL agent is speaking in
utterances that the fixed agent is trained on, and as such they
can reach agreement through imitation of human dialog.
However, the issue reappears as once the RL agent trains a
certain amount and starts to differ from the human dataset,
the other agent’s performance also decays and there’s an
exponential loss of combined performance.

To help with the reward sparsity issue we experimented with
adding a direct negative reward to making a proposition
that was impossible given the current count of the items
(which the policy was capable of since it was in the action
space of the greater task where some other instantiation
might have more of a certain item). This had no perceptible
performance gain for our RL agent, which we believe was
due to the fact that the space of the possible allocations,
even with the impossible ones filtered out, was still large.

7. Future Steps

Both the original paper and our experiments have shown that
while a Language Modeling based agent can produce some-
what believable dialog for negotiation, directly attempting
to fine tune this network with RL is problematic as being
completely free from the linguistic constraints of a language
model pushes the agent to diverge from human understand-
able language, and the co-dependence of the agents exacer-
bates the problems. We have also shown that trying to keep
the language aspect fixed by using very simple template-
filling also fails as the other fixed agent cannot handle a
robotic sounding counterpart.

Training Dialog Agents to Negotiate

One immediate solution that we implemented is to integrate
the language modeling into the RL framework by adding
a fluency reward (the likelihood each utterance gets from
the LM). More specifically, the RL agent with the fluency
reward is initialized with two separate language models
that have identical weights in the beginning. However, the
REINFORCE updates are only applied to the parameters
of one of them. This updated language model is used to
generate the utterances in the dialog. The fixed 'reference’
model on the other hand is used to calculate the likelihood of
the utterance of the updated model. This likelihood is then
used as an immediate reward in the RL task. The balance
between the game rewards and language fluency rewards
can be tuned as a hyperparameter. In our experiments we
observe that training this way gives a slight boost to the
percentage of agent utterances that fully match a human
sentence without affecting game performance when one
of the agents is kept fixed. However, the real expected
effect of this method is when both agents are simultaneously
trained, as we’re expecting such training to actually give
rise to better negotiation strategies and less exploitation of
a particular language model. We’re still hyperparameter
tuning to achieve stable training between two RL agents in
this scenario.

7.1. Better Language Model and Goal Planning
Separation

We believe an even better way to achieve goal-based train-
ing without diverging from human language is model-level
separation of language modeling and negotiation planning
aspects of the agent. We believe the first milestone for us
would be to keep the language model for dialog generation,
but condition the generated responses on a goal embedding,
which could be outputted by a neural architecture trained
using RL, while the language model aspect could still be
trained using supervised learning.

Such an approach would come with the challenge of jointly
training the two components, but the fact that original hu-
man dataset includes the context information and reward
information might help with off-policy training, first train-
ing the RL component to output goal embeddings that push
the language generation component to utter the same things
the humans did, and later only training the goal embedding
parameters through reinforcement learning.

Finally more recent approaches like the editor approach
which picks a template sentence from a large human dataset,
and then edits it word by word using some conditioning
vector, could be applied successfully in this task where we
want agents to be able to utter sentences similar to those
from the human corpus, but with clever edits (like changing
number of items offered) conditioned on a context vector
(the goal of the agent, trained by RL) that they learn to train.

8. Additional Info

e Late days used: 3

e Contributions: I (Kerem Goksel) am submitting this
project to 224N. Me and my partner(Ishan Somshekar)
also submitted it to CS 234. Ishan and I pair pro-
grammed the template filling agent together and ran
the experiments together. After we submitted for 234,
I implemented the language model scoring and ran fur-
ther experiments between various agent types for 224N
and fixed some bugs in the original codebase.

Unfortunately = the LM-scoring experiments
didn’t make it to the report, but they
can be found on our Codalab worksheet:

https://worksheets.codalab.org/worksheets/0xf9be89b05d6b4e1d8484b4t

(might be easier to run ’wsearch end-to-end-
negotiator’ on codalab to find it) and our GitHub:
https://github.com/bkgoksel/negotiator).

Our work is Dbased off of the pub-
licly released codebase by Facebook.
(https://github.com/facebookresearch/end-to-end-
negotiator)

I am also in the Codalab team and was providing full
support for the Codalab leaderboard throughout the
quarter, both to Abi and occasionally on Piazza. 1
haven’t kept track of actual hours spent on this but
looking at internal Slack/email timestamps I estimate I
spent 40 hours over the past two weeks for Codalab
debugging and guidance for 224N.

References

Lewis, Mike, Yarats, Denis, Dauphin, Yann N., Parikh, Devi,
and Batra, Dhruv. Deal or no deal? end-to-end learning
for negotiation dialogues. CoRR, abs/1706.05125, 2017.
URL http://arxiv.org/abs/1706.05125.

