A Deep Learning System for the Stanford Question
Answering Dataset (SQuAD)

AmirMahdi Ahmadinejad
MSandE Department
Stanford University
ahmadi@stanford.edu

Abstract

SQuAD is a reading comprehension dataset. It means that given a paragraph and
a question, our goal is to generate an answer by comprehending the paragraph.
Being able to accurately perform this task shows that we have developed systems
that can understand texts which is one of the fundamental goals of Natural Lan-
guage Processing. In this project we use deep learning with additional ideas of
Bidirectional Attention Flow [1] and Conditional Ending [2] to train a model over
SQuAD that is able to deal with the task of question answering.

1 Introduction

Question answering (QA) problem is a fundamental and difficult task in natural language processing,
since it requires both knowledge of language and knowledge of the world. In this project our goal is
to design a deep learning model for QA over SQuAD [3].

1.1 Dataset and Problem Definition

We use SQuAD as our dataset. SQUAD has this feature that the answer exactly lies in some part of
the given paragraph. Each record in this data set has three (character string) fields: “Context” (i.e.
given paragraph), “Question”, and “Answer” which exactly appear somewhere in the context. This
data set is divided by the developers into three parts: “train”, “dev”, and “test”. The first two are
available to the public in order to train and fine-tune their models. The “test” set is private and is
only used to evaluate and rank final models. Figure 1 shows an example of a question, its context,
and its answer.

We use two measures to evaluate the accuracy of the models. 1) EM is the exact match measure
which is one if the predicted answer exactly matches the ground truth answer. F1 is the harmonic
mean of precision and recall. For example if the answer to a question is “Microsoft Corp”. If the
model output is “Microsoft”, then EM score is 0 but F1 is 1/2.

1.2 Related Work

Although the SQuAD is less than two years old there has been a lot of amazing approaches that
researchers tried in order to beat this challenge. Here are the two that are used in this project:

e Bidirectional Attention Flow: This method uses attention technique to both attend from
question to context and from context to question [1].

e Machine Comprehension Using Match-LSTM and Answer Pointer: Answer pointers are
used to generate the end position conditioned on the start position[2].

in early 2012 , nfl commissioner roger goodell
tated that the league planned to make the 50th
super bowl " _ " and that it would b
an important game for us as a league " .
QUESTION: what one word did the nfl
commissioner use to describe what super bowl 5

@ was intended to be ?
TRUE ANSWER: spectacular
PREDICTED ANSWER: spectacular
F1 SCORE ANSWER: 1.000
EM SCORE: True

Figure 1: Question - Answer Sample

Here are a bunch of other interesting techniques that are used in this area:

e R-Net: This is a attention technique developed by Microsoft researchers which include a
layer of self attention (context-to-context) in addition to the context-to-question layer [4].

e Chunk Extraction: Since the answer in SQuAD is basically a chunk of the context, this
paper tries to predict the joint probability distribution of start and end position (or span of
the chunks of text) [5].

e There are a lot more models built around question answering task and SQuAD [6, 7, 8, 9,
10].

2 Approach

The general architecture of my network can be seen in Figure 2. It is a simple version of the
model provided by Minjoon et al. [1]. We use the basic framework layer provided by course staff
and improved it by adding to enhanced model. First I replaced the basic attention layer with a
bidirectional attention layer (BiDAF) [1]. Moreover, instead of using a independent distributions
over start and end positions we use a conditional model to predict the end position based on the
start position using an additional layer of RNN networks. The detailed description of the model is
provided in the following subsection.

2.1 Model

RNN Encoder Layer

For a single record in the dataset, the context is represented by a sequence of d-dimensional word
embeddings z1, xo, ..., TT, and the question is also represented by a sequence of d-dimensional
word embeddings q1, q2, - . ., ;7. We use GLOVE [11] word embedding for this task. We then use a
1-layer bidirectional RNN with GRU/LSTM cell and feed the word embeddings to it to get hidden
forward and backward states of context and question. Note that the weights for this layer is shared

among question and context (See Figure 2). The context hidden state i is called h; = [h;; h;] €
R?", and the question hidden state j is called u; = [j; ;] € R?".

Attention Layer

We use Bidirectional Attention Flow (BidAF) as described in [1]. This method generate both
context-to-question and question-to-context attentions. This layer is replaced with the BasicAttn
layer provided in the Baseline model. The addition of Q2C attention helps to provide more infor-
mation about the relevance of a part of context to the question. In what follows we describe in more
details how this attention is computed’.

To compute the bidirectional attentions, we first compute a similarity matrix S € RT*7, where S;;
provides a similarity score between h; and u;.

'The default project handout description is used for the formulas.

Start End Query2Context

Softmax
Dense + Softmax | | LSTM + Softmax | FaYesTsarasTas) r_'_] UJ
f minamma
AL,
°J| |L'_J ‘m‘ lw ‘@ o Uy
Fully Connected Layer hy h, hy
g g
: 2 o Context2Query
Query2Context and Context2Query
Attention : 3‘ |r,1| (o] ’rﬂ‘ ’f_:i ‘roj‘ uy
Tlei e o/ e oo
hy hy hy U U ;‘)E o‘;oi ol;oHoi‘o% U,
g [::I I:I D [D LSgeSae SpG spe sga) Uy
] 2
hy hy hy
1] 1 1] |
Word
Embedding
X1 X2 X3 XT q1 QJ
L d ! GLOVE
Context Query

Figure 2: The model used for training is similar to [1]. It does not have the character-level CNN and
the LSTM RNN layer after Attention layer is replaced with a fully connected layer.

Sz = w;m[hi;uj;hi ouj] €R

Now to produce context-to-question attention (look at the green box in Figure 2), we generate soft-
max over the rows of the matrix S, and use the resulting probability distribution to take the convex
combination of the questions hidden states u;’s. Specifically,

o' = softmax(S;) €R’ Vie{1,...,N}

ai=Za§-u]— eR* Vie{l,...,N}
J

Note that 3 provides a probability distribution over context tokens, which is obtained based on
importance of each context in the view of question (this is how we compute m).

To produce question-to-context attention (look at the orange box in Figure 2), we compute m;, 3,
and R’ as follows:

mizmaxSij eR ViE{l,...,N}
J

B = softmaz(m) € RT
T

W= Bih
=1

Finally the output of this layer for each context location ¢ would be (See Figure 2):

gi = his as; hi o ag; hi o B

Answer Length Distribution Start Positions

60000

50000

Frequency

40000

0.0 0.2 0.4 0.6 0.8 1.0
30000 End Positions
6000

Frequency

20000 -
4000

10000 A

Frequency

2000

[} 10 20 30 40
Answers Length

(a) Answers length distribution (b) Start-end position distribution inside the text

Figure 3: Dataset Analysis

QOutput Layer

The output of attention layer is fed to a fully connected layer with a ReLU activation function as
follows:
g, = ReLU(Wg; +b) € R"

Where W € R"*8" and bias b € R". Then p*t®"* the predicted probability distribution of the start
position of the answer is computed as follows:

pStaTt = Softmax(w;artgg + bstart)
To obtain p°"? we do something different than the base model. We use the idea of conditional ending
[1, 2] to produce p™? conditioned on pt®"t. To do this we use a recurrent neural network (RNN)
with Long Short Term Memory (LSTM) cell. The input to each cell is [g}; pf*®"*]. Let y; be the
hidden state of cell i. Then p°"? is computed as follows:

pend = Softmam(w;rndyi + bend)

Loss

Our loss function is the cross-entropy loss for start and end position which can be stated with the
following formula:

end(‘

loss = — log pstart (istart) - logp Zend)

Where 4.+ and i.,4 are actual start and end positions of the answer.

3 Experiments

We use the basic framework provided by the course staff as baseline and develop it with the model
specified above. We first do some analysis over the dataset to get an understanding over it and be
able to set the parameters of the model accordingly. Moreover, we apply the improvements over
baseline incrementally to be able to measure the effect of each improvement.

3.1 Dataset Properties

Figures 3, 4 show some statistics about the dataset. In Figure 3 we observe that most of the answers
has length less than 20. Moreover, Figure 4 shows that most of the contexts has length less than 400.
We used this observation to reduce the context_len in the baseline to 400 to increase the speed of
training and scale to larger networks.

Context Lengths Distribution Question Lengths Distribution
30000

30000
25000 4
25000
20000
20000

15000 A
15000

Frequency
Frequency

10000 4 10000 -

100 200 300 460 560 660 700 80(0 10 20 30 40 50 60

Context Length Question Length
(a) Contexts length distribution (b) Contexts length distribution

Figure 4: Dataset Analysis - length of questions and contexts

QAModel/loss/loss daviloss
6.00
5.40
4.00 500
4.60
2.00 4.20
3.80
0.00
3.40
0.000 4.000k 8.000k 12.00k 16.0 2.000k 6.000k 10.00k 14.00k
(a) Train loss (b) Dev loss
dev/EM dev/F1
0.400 0.550
0.300
0.450
0.200
0.350
0.100
0.00 0.250
2.000k 6.000k 10.00k 14.00k 2.000k 6.000k 10.00k 14.00k
(c) Dev EM score (d) Dev F1 score

Figure 5: Model Training for best model

3.2 Incremental Improvements and Fine Tunings

The final F1/EM scores of the models we built over this project are reported in Table 1. We take an
incremental approach to measure the impact of every improvement:

e Baseline: This is the basic model provided by course staff, which includes a basic attention
layer.

e BiDaF-GRU: This is the model which has improved attention layer with BiDaF. The RNN
Encoder cell used for this model is GRU.

e BiDaF-GRU1: The difference with previous model is only in batch size and supported
context length (which is reduced to 400). We see that the performance is almost similar
but, we note that the training time is decreased with these parameters.

e BiDaF-ConEnd-LSTM: This is the model with conditional ending attached. The RNN
Encoder cell used for this model is LSTM.

e BiDaF-ConEnd-GRU: The RNN Encoder cell used for this model is GRU.
e BiDaF-ConEnd-GRUI1: The hidden layer size increased to 250.

e BiDaF-ConEnd-GRU2: The hidden layer size increased to 400, batch size of 70, and
dropout of 0.2.

Figure 5 shows the progress of our best model in this project. This is BiDaF-ConEnd-GRU2 which
achieves dev-F1=57.24 and dev-EM=46.59.

Model Name Hid. Size | Bat. size | dropout | context length F1 EM
BiDaF-GRU 200 100 15 600 5097 | 41.14
BiDaF-GRU1 200 80 2 400 49.96 | 40.20
BiDaF-ConEnd-LSTM 200 100 2 400 54.54 | 43.98
BiDaF-ConEnd-GRU 200 100 2 400 55.25 | 44.56

BiDaF-ConEnd-GRU1 250 100 2 400 55.72 45.2
BiDaF-ConEnd-GRU2 400 70 25 400 57.24 | 46.59
Baseline 200 100 15 600 39.813 | 31.173

BiDaf Paper[1] - - - - 71.3 68.0

Table 1: Model parameters and their F1/EM dev scores

4 Conclusion

The framework we used in this project can be used to build further complex network. Two improve-
ments that seems pretty reasonable are:

o Character level CNN: Minjoon et al. [1] used this method along with the word embeddings
to feed to the RNN Encoder.

o Joint prediction of start and end: It is possible to build the output layer so that it can provide
the join probability distribution of start and end position.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for machine
comprehension,” arXiv preprint arXiv:1611.01603, 2016.

S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer pointer,” arXiv
preprint arXiv:1608.07905, 2016.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine
comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching networks for reading
comprehension and question answering,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2017, pp. 189-
198.

Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou, “End-to-end answer chunk extrac-
tion and ranking for reading comprehension,” arXiv preprint arXiv:1610.09996, 2016.

X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classifica-
tion,” in Advances in neural information processing systems, 2015, pp. 649—657.

C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for question answering,”
arXiv preprint arXiv:1611.01604, 2016.

[8] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain
questions,” arXiv preprint arXiv:1704.00051, 2017.
[9] X. Liu, Y. Shen, K. Duh, and J. Gao, “Stochastic answer networks for machine reading com-
prehension,” arXiv preprint arXiv:1712.03556, 2017.
[10] B. Dhingra, H. Liu, Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Gated-attention readers for
text comprehension,” arXiv preprint arXiv:1606.01549, 2016.
[11] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,”

in Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), 2014, pp. 1532-1543.

