Machine Reading Comprehension for the SQuAD Dataset
using Deep Learning

Chung Fat Wong
cfw20@stanford.edu

Abstract

Since the release of the Stanford Question Answering Data, a lot of work has been done on Machine
Reading Comprehension using end-to-end deep learning networks. In this assignment, I have taken the
proposed baseline architecture and investigated how performance may be improved through adding
more sophisticated network components as well as fine-tuning of the hyperparameters. Through the
accumulation of these improvements, the final single model achieved a score of 75.7% FI and 65.3% EM
on the dev set.

1. Introduction

Machine reading comprehension is an interesting task as it is both difficult and useful. It is difficult as the
machine needs to be able understand complex interactions between the question and the context
paragraph in addition to the many well-known difficulties associated with Natural Language Processing.
It is useful as a well-trained system might be utilized in the work place, e.g. question and answering of
regulatory documents or as a personal assistant, e.g. handling information storage and retrieval.

In the following sections, we will go through the related research that been done on this topic as
significant progress has been made in recent years, especially after the release of the SQuAD dataset [1].
We will describe the approach that we took to get to the final model, including the intuition behind some
of the network components. Then we will go through the experiment set up of this project, including a
detailed analysis of the results. And finally, future work that could be done to improve the performance of
the model.

2. Related Work

There has been a lot of research work done on making better machine reading comprehension systems
for SQUAD as can be seen by the very active leaderboard. One of the early successful models was the
Bidirectional attention flow (BiDAF) [2] network which introduced an attention flow layer that allows
both the context to attend to the question and vice versa. This attention layer is still regularly used in
recent papers. The BiDAF network also sets out an architecture which consists of the following layers: (1)
Embedding Layer, (2) Contextual Layer, (3) Attention Layer, (4) Modelling Layer and (5) Output Layer.
We will also follow this general framework.

Another high-performing model is the Dynamic Coattention Network [3] which also has a layer allowing
two-way attention between the context and the question. The Coattention layer also computes second-
level attention which means attending over representations that attention outputs. In this assignment, we
implemented both the BiDAF and Coattention layers and analyzed their effect on the performance of the
overall network. In a slightly different direction, the R-Net [4] contains a self-attention layer which allows
a sequence of representations to attend to all other elements in the sequence.

More recent architectures such as the one introduced in Simple and Effective Multi-Paragraph Reading
Comprehension [5] combine various types of attention layers in order to allow more sophisticated

representations of the context locations. In this particular case, the BiDAF layer is connected to self-
attention layer. This is the implementation that [have followed in this assignment.

In addition to the above, we also used ideas from other research papers to try to improve the
performance of specific parts of the network. For example, we used an idea from the DrQA [6] to achieve
smarter span selection at test time. And the FusionNet [7] model provided information about how to
combine different types of attention layers together as well as experimental data on the advantages and
disadvantages of different attention functions, e.g. additive and multiplicative.

3. Dataset

The main dataset for this assignment is the Stanford Question and Answering Dataset (SQuAD). It is a
reading comprehension dataset consisting of questions posed by crowdworkers on a set of Wikipedia
articles. The answer to every question is a segment of text from the corresponding reading passage. The
training set consists of around 86,000 question-answer pairs while the development set contains around
10,000. The test set is hidden.

It is informative to visualize various aspects of the training dataset as it gives a quick check on the ranges
within which the hyperparameters should be searched.

Histogram of Question Length: p=113, 0=3.7 Histogram of Context Length: p=137.90=56.9
20000
20000
17500
15000
15000
12500
10000 10000
7500
5000 5000
2500
0 : ; : - 0 - T r . T 7
0 10 20 30 40 50 60 0 100 200 300 400 500 600 700 800
Question Length Context Length
Histogram of Answer Start: =58.1, o=48.8 Histogram of Answer Length: u=3.38, 0=38
50000 -
20000
40000 -
15000
30000 4
10000
20000 4
5000 10000 -
0 T T T T 0- y T T
0 100 200 300 400 500 600 0 10 20 30 40
Answer Start Answer Length

For example, the histogram for the context lengths clearly show that the majority of these are shorter
than 300 words (around 98%). Hence it is possible to set the maximum input length of the context for the
input layer to around 300 without losing much in the data but gaining a lot in terms of memory efficiency.
The maximum input length for questions could be set in the same way to around 20.

The histogram for the answer lengths show that the vast majority of answers are very short, e.g. 97% are
below 15 words. This information helps with determining the answer span at test time as we could limit
the search for answer spans to lengths between 0 and 15 to prevent the model from choosing

unnecessarily long answer spans. This was implemented using the methodology suggested in DrQA and
improved the dev test F1 score by around 2%. As the histogram for the location of the answer start also
shows a strong bias towards the beginning of the paragraph, I also investigated whether this could be
taken into account at test time, however the effect turned out to be much smaller than the one for the
answer length.

Finally, looking at the dataset also gave a good argument that a specific set of the word embeddings
should be trainable. The below table show the 20 most common words in question set vs the most
common words in the context set.

Common Question Word Frequency Common Context Word Frequency

? 85,454 the 810,302
the 63,796 3 654,625
what 50,294 . 435,376
of 34,039 of 407,204
in 25,965 and 331,235
to 18,674 in 289,537
was 17,120 to 225,877
is 16,365 a 189,314
did 15,658 " 112,503
a 11,096 as 101,158
how 9,256) 92,518
who 9,167 (92,436
's 8,241 is 91,511
many 5,378 's 65,087

It's clear that many of the common question words are not as common in the context set and given that
the GloVe [8] embeddings are trained on the same data as the context set, i.e. Wikipedia articles, it
seemed beneficial that some of the common question words should be trained in the question-answer
environment. After some experimentation, 9 frequent question words were made trainable in the final
model, including ['what’, 'did’, 'many’, 'who', 'when', 'how', 'are’, 'which’, '?']. This improved the dev test
F1 score by around 0.5%.

4. Model

The architecture for the final model is based on approach shown in Simple and Effective Multi-Paragraph
Reading Comprehension. The organisation of the layers is shown in the diagram below. The following
subsections will go through each layer in more detail.

Word Embed Word Embed
Bi-GRU l Bi-GRU l
BI Attentlon

— ;
Linear RelLU

Embedding Layer

Bi-GRU Contextual Layer
Attention Layer
('Self

. Attention , Modelling Layer

Qutput Layer

Linear RelU J
L b e - SRS
R
. Sum \l/
T j Concat
i
Linear Bi-GRU

Linear

Embedding Layer:

Embedding is done using pre-trained word vectors. Specifically, we chose to use GloVe.6B with 100
dimensions as experiment using higher dimensions did not improve performance. As described above, we
made a specific set of frequently seen question words trainable. The vector representations for out-of-
vocabulary words (‘'UNK’) and padding (‘PAD’) are also made trainable.

Contextual Layer:

A shared bi-directional GRU is used to map the question and context embeddings to contextual aware
embeddings

Attention Layer:

The attention layer combines both a BiDAF layer and a Self-Attention layer. Specifically, the output from
the BiDAF is passed through a linear layer with RELU activations and then is passed through a bi-
directional GRU before going into the Self-Attention layer. The output from the Self-Attention layer goes
through another linear layer with RELU activations and are then summed with the original outputs of the
BiDAF. The intuition behind this combination is that the BiDAF lets the question words attend to the
context as well as letting the context words attend to the question words. This results in a rich
representation of the context locations. Since the context can be long and distant parts of the text may
rely on each other to fully understand the content, the Self-Attention layer then lets the enriched context
attend to itself.

BiDAF Layer:

Let hi be the vector for context word i, g; be the vector for question word j, and nq and nc be the lengths of
the question and context.

a;; =wyhi+w; g +W3'(hiOq1')
where w1, w2 and w3 are learned vectors.
The context -to-query vector ci:

Dij = softmax(al-y:)

"q
Ci = Z 4a;Dij
j=1

The query-to-context vector qc:
m; = lrsr}.’;lr)l(q aij
p; = softmax(m)

Ne
qc = Z hip;
i=1

The final output is:

[hs e by © € 4:96]

Self-Attention Layer:

Let X3, ..., Xn be a sequence of representations corresponding to context locations:

el = f(Ux)TDf(Ux;)
t! = softmax(e?)

ne
i— i
bt = z t]-xi
Jj=1

Here f{x) = max(0, x) i.e. the ReLU function and D is a diagonal matrix. We use this symmetric form with
nonlinearity to compute the attention function as the original additive attention is very memory intensive.
Also it was shown in the application of FusionNet that this form of attention function performance better
than the additive form. The resulting vectors are concatenated with the original vectors and passed
through a linear layer with ReLU activations. Finally, those outputs are summed with the original outputs
from the BiDAF layer.

Modeling Layer:

A last bi-directional GRU is applied, followed by a linear layer that computes the answer start logits for
each word in the context. The hidden states of this GRU are concatenated with the inputs and fed into a
second bi-directional GRU and linear layer to find the answer end logits. Both the answer start and end
logits are softmaxed to produce probabilities. During training, we optimize the negative log-likelihood of
selecting the correct start and end tokens.

Prediction:

Instead of taking separate argmaxes over pstrt and pend to get the predicted span (which could end up with
the end location occurring before the start location in some cases), we implement the methodology in the
DrQA paper. In this case, the aim is to find the start and end context location pair (i j) such that
pstare(i)pend(f) is maximized but subject to the constraint thati <j < i+ ansien

5. Experiments

Implementation:

For the implementation of the model, we built upon the Tensorflow code which was provided as the
baseline for the assignment. As mentioned above, for the word embeddings, we use the pre-trained
GloVe.6B vectors. The embeddings for ['PAD’, ‘UNK’] and ['what’, 'did’, 'many’, 'who', 'when', 'how', 'are’,
'which', '?'] are made trainable. The model is trained with the AdamOptimizer with a learning rate of
0.001. The hidden size for all the bi-directional GRU’s and linear layers with ReLU activation is set at 200

and they all share a drop out rate of 20%. Batch size is set at 100. In the final version of the model, a batch
of size 100 takes around 4.6 to 4.8 seconds to train on an Azure NV6 machine (vs 1.1 to 1.3 seconds for
the baseline model).

Experiments:

In order to get the final state of the model, a large number of iterations of network components as well as
the hyperparameters were performed. The largest contributors to the performance improvements over
baseline were the bi-directional GRU’s in the modelling layer and the substitution of BiDAF into the basic
attention layer. Together these account for around 25% increase in the F1 score over the baseline model.
The addition of a smarter span selection procedure added around 2-4% as did the training of the small
number of word embeddings. The addition of the self-attention layer added around 1%. Other small
improvements added <1%.

Results:

The SQuAD task is mainly evaluated using the F1 and EM scores which are clearly quantitative. However
it is also important to look at the performance of the model qualitatively, e.g. by looking at example
results. We will first look at the quantitative measures.

The F1 score is the less strict of the two quantitative metrics as it is the harmonic mean of precision and
recall, i.e. it take into account the amount of overlap between the predicted answer and ground truth. On
the other hand. The EM score would be 0 for any example where the predicted answer is not exactly the
same as the ground truth. Our final model produced 75.70% F1 and 65.29% EM on the dev set. The below
table compares these performance numbers to the leaderboard figures of the related works.

MODEL F1 (%) EM (%)
R-NET (SINGLE) 84.265 76.461
FUSIONNET (SINGLE) 83.900 75.968
BIDAF (SINGLE) 77.323 67.974
OUR MODEL (SINGLE, DEV SET) | 75.700 65.289

It is also useful to examine how the model performs for different types of questions.

FIRST WORD IN QUESTION F1 (%) EM (%)
WHEN 82.95 76.56
WHO 76.41 70.35
HOW 74.44 65.21
WHAT 73.08 63.05
WHERE 72.83 62.11
WHY 59.84 37.86

There’s a clear difference in performance of the model on questions starting with “‘WHEN’ vs questions
starting with “‘WHY’. There are two likely explanations for this: (1) questions starting with ‘WHY’ requires
more reasoning and comprehension of the text which is supported by the fact that ‘WHY’ answer are
average the longest (around 7 words vs 2-3 for other types) and (2) the number of ‘WHY’ in the dataset is
small compared to the others, e.g. accounting for only 5% of the dev set, hence the model would not be as
well trained for these.

On the qualitatively side, it is useful to visualize the attention weights, the answer start and end
probability distribution for both questions where the model answered correctly as well as the ones where
it answered incorrectly. For the purposes of the visualisation, we will only show the BiDAF Q2C weights
even though our actual attention layer is more complex as these weights tend to be more intuitive.

For example, the model scored 28.6% F1 on the following question and context set:

- Context: Charles Avison, the leading British composer of concertos in the 18t century, was born
in Newcastle upon Tyne in 1709 and died there in 1770
- Question: What year did Charles Avison die in Newcastle?

- Predicted Answer: 1709 and died there in 1770
- True Answer: 1770

The model got this question incorrect as it included the birth year in the answer even though only the
year of death was asked. The visualization shows that this might have happened because the attention
was focused on the word ‘born’ in the context paragraph which probably caused both the answer start
and end probabilities to have a significant weight on the year ‘1709” as well as ‘1770’. However, more
work needs to be done to understand why the attention fell so heavily on ‘born’ in the first place.

Ans End o \

o) [

- l\ ’

Ans Start

Q2cC

born 1709 1770

On a question where the model got the exact match:

- Context: Westwood One will carry the game throughout North America, with Kevin Harlan as
play-by-play commentator

- Question: Who is the play-by-play announcer for the game?

- Predicted Answer: Kevin Harlan

- True Answer: Kevin Harlan

In this case, it's clear that the attention did the correct job as it emphasised the words ‘play-by-play’ and
‘commentator’ even though the word ‘announcer’ was used in the question. And the answer start and end
probabilities also gave the correct locations the highest weightings.

|

Ans End

Ans Start

Q2C

kevin
Play-by-play commentator

harlan

- Context: Non-revolutionary civil disobedience is a simple disobedience of laws on the grounds
that they are judged "wrong" by an individual conscience, or as part of an effort to render certain
laws ineffective, to cause their repeal, or to exert pressure to get one's political wishes on some
other issue. Revolutionary civil disobedience is more of an active attempt to overthrow a
government (or to change cultural traditions, social customs, religious beliefs, etc..revolution
doesn't have to be political, i.e. "cultural revolution", it simply implies sweeping and widespread
change to a section of the social fabric).

- Question: What type of civil disobedience is larger scale?

- Predicted Answer: non-revolutionary

- True Answer: revolutionary civil disobedience

The model got a 0 F1 score on this question. The attention weights show that there’s focus on the words
“civil” and “disobedience” at the start of the context paragraph which is actually sensible. However, the
question requires a much deeper understanding of the meaning of both the context and the question, e.g.
“larger scales” means to overthrow a government. Hence, for this type of question, it would be very
difficult for machine question and answering systems currently.

Q2C

civil disobedience

6. Conclusion:

Building a machine reading comprehension system is an extremely difficult task even though we had the
benefit of the significant research that has been done recently. Future experience with building end-to-
end deep learning models will be useful in helping us to optimize the networks for peak performance.
Fortunately, there are many avenues for future work:

- Implementing a character-level CNN to help with out-of-vocabulary words or use the larger
variations of the GloVe embeddings

- Add POS and other features to the word embeddings

- Use ensemble of models

- Investigate new types of models e.g. ‘Attention is all you need’

7. References:

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for machine
comprehension

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question answering.

[4] R-NET: MACHINE READING COMPREHENSION WITH SELF-MATCHING NETWORKS

[5] Christopher Clark, Matt Gardner. Simple and Effective Multi-Paragraph Reading Comprehension

[6] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain questions.

[7] Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, Weizhu Chen. FusionNet: Fusing via Fully-Aware Attention with
Application to Machine Comprehension

[8] Jeffrey Pennington, Richard Socher, Christopher D. Manning. GloVe: Global Vectors for Word Representation

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia
Polosukhin. Attention Is All You Need

