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Abstract

In this paper, we re-implement FusionNet and compare it with a deep version of
the Bidirectional Attention Flow model, as applied to the Stanford Question and
Answer Dataset (SQuAD). Both the simpler and the more sophisticated
architecture leverage some form of LSTM skip connections. We observe that
skip connections are responsible for most of the models’ performance in the
early training stages. Both models achieve 74.0-74.2% F1 on SQuUAD.

1 Introduction

Machine comprehension is a critical problem in natural language processing, as it requires an
algorithm to exhibit an understanding of a passage of text on multiple semantic levels. A common
task used to develop and test machine comprehension is question answering. The variation of the
problem that we worked on is a standard formulation as described by Rajpurkar et al. in their 2016
introduction to the Stanford Question and Answer Dataset, and consists of providing the algorithm
with a passage of text (context), a question, and a ground truth label in the form of a smaller
contiguous passage within the context that constitutes the answer to the question. The model is
evaluated on the amount of overlap between its prediction and the true answer to the question, as
labeled by three human subjects. Recent advancements in deep-learning architectures have pushed
the performance of machine comprehension models closer to a human baseline, but this area of
research is still very active; the recently released architecture that we applied on this model is still
awaiting publication at ICLR 2018.

2 Dataset

The Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016) contains over
100,000 question-answer pairs, posed on 500+ Wikipedia articles. The split of the dataset is 80%
for the training set, 10% for the development set, and 10% for the hidden test set.

We perform some basic analysis on the dataset in the form of histograms of the context length,
question length, and answer length in the training set. We find that in the training set, most
paragraphs do not exceed 300 words (Figure 1, left), that there are almost no questions longer than
30 words (Figure 1, center), and that most answers are shorter than 10 words. Based on this
information, we use a context length of 300, question length of 30, and maximum length of answer
of 15. Reducing the context length and question length results in decreasing the training time.
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Figure 1: Histogram of context length (left), answer length (center), and question length (right)
using the data from the train portion of SQUAD

3 Approach and Related Work

3.1 Baseline

For the baseline, we use the default project baseline code, which employs basic dot-product
attention, with the encoded context attending to the encoded question. The resulting attended
context embedding is concatenated with the previous encoded context, to produce a blended
representation of the context. This blended representation is then passed to a fully connected layer,
which features a ReLU non-linearity. The predictions for the start and end tokens are computed
independently of each other, by passing the output of the fully connected layer to a softmax layer.

3.2 Bidirectional Attention Flow model (BiDAF)

The BiDAF model (Seo et al., 2017) is a top-scoring model on SQuAD, whose core idea is to
avoid the negative effects of early summarization using attention by using bidirectional, context-
to-query and query-to-context, memoryless attention to obtain a question-aware representation of
the context.

We chose to implement two elements of the original model: the bidirectional attention and the
modeling layer. We decided not to implement the convolutional character embedding, since this
feature added less than 2% to the F1 score in the original paper. Since we did not use character
embeddings, we also did not implement the two-layer Highway Network (Srivastava et al., 2015)
that combines the character and word embeddings in the original paper. We chose to integrate the
Attention Flow and the Modeling Layer into our model, and then targeted three potential areas for
improving our simplified BIDAF model.

3.2.1  Attention Flow and Modeling Layer

We implemented the Attention Flow layer from (Seo et al., 2017), which computes attention from
the context to the query, and from the query to the context, producing a query-aware
representation of the context. (Figure 2) (Seo et al., 2017). We also implemented the two-layer bi-
directional RNN-based modeling layer, which takes as input the query-aware representation of the
context and captures the interaction between the context words conditioned on the query (Seo et
al., 2017). The outputs of the modeling layer are passed onto the output layer, for the answer
prediction step. We re-implemented the architecture of the output layer used by Seo et al, where
the end token prediction is not made independently of the start token prediction as in our baseline
model.

3.2.2 Modifications to BiDAF

We identified two potential areas of improvement for the simplified BIDAF model we created:
using more complex word embeddings, and deepening the modeling layer while simultaneously
introducing skip connections in it.

First, we extended the model to use additional input features at the word embedding step; this was
inspired by the recent success on SQUAD of the DrQA (Chen et al., 2017) and FusionNet (Huang
et al., 2018) models, both of which supplement the word vectors with features such as exact match
(i.e. whether a word in the context can be matched exactly to a word in the question), Part-Of-



Speech tag, Named Entity type, and Aligned Question Embedding. We chose to focus on Aligned
Question Embedding, based on the feature ablation analysis for DrQA (Chen et al., 2017). The
analysis identified both the aligned question embedding and the exact match feature to be equally
important; ablating either one of them decreased the model’s F1 score by 1.5%, and ablating both
led to a decrease in F1 of 19.4%. We decided to only implement one of the two features because of
the diminishing returns of implementing the second feature in the context of time constraints.

The Aligned Question Embedding is a function fg;;4,, on each context word ¢; defined as follows:
exp (a(E(c))) *exp |« (E(q;)
fatign(c) = z ai.jE(qj)' where a;; = ( ) ( ( . ))
7 X1 exp (a(E(ci))) * exp (a (E(qj,)))

and a(e) is a single dense layer with ReLU nonlinearity. This feature introduces soft alignments
between partial synonyms, such as car and vehicle. (Chen et al., 2017)

Second, we added a third layer to the BIDAF modeling layer, and introduced skip connections in
order to avoid potential backpropagation issues that could be caused by deepening the architecture.
We investigated how a deeper LSTM architecture performs in the context of the BiDAF model
because deep LSTMs have been shown to outperform shallower architectures in language-related
tasks such as machine translation and language modeling (Sutskever et al., 2014), and reading
comprehension (et al., 2015). Sutskever et al. demonstrated that deep LSTMs significantly
outperform shallow LSTMs, employing a four-layer deep LSTM in their Sequence-to-Sequence
model for Machine Translation (Sutskever et al., 2014). Since deep stacked RNNs are oftentimes
difficult to train, we opted to add shortcut connections across the three different layers. Shortcut
connections, also called skip connections, allow unimpeded information flow across different
layers (Raiko et al., 2012; Graves, 2013; Hermans and Schrauwen, 2013), and have been shown to
be effective in deep stacked models (He et al., 2015; Srivastava et al., 2015; Wu et al., 2016).
While this addition increases the computation time, we opted for this improvement as a proof of
concept, since optimizing training time is outside the scope of our project. However, recent
research has started identifying techniques, such as shortcut blocks (Wu et al., 2017), that allow
including shortcuts in deep stacked RNNs without a significant increase in training time.

3.3 FusionNet

FusionNet (Huang et al., 2018) is a new architecture from Microsoft, which performs very well on
SquAD, where it achieves an F1 score of 83.9 and EM of 76.9, on Adversarial SQuAD (Jia et al.,
2017), and on Natural Language Inference tasks on the MultiNLI corpus (Williams et al., 2017).
Adversarial SQUAD consists of two adversarial evaluation schemes based on SquAD, which aim
to test whether the models trained on SquAD truly understand language. Many of the top-scoring
models on SquAD perform poorly on these evaluation schemes; sixteen of the published models
for SquAD, including BiDAF, drop from an average F1 score of 75% to 36% (Jia et al., 2017).
Under both adversarial evaluations (i.e. AddSent and AddOneSent), the FusionNet model
outperforms BiDAF’s F1 score by ~15%. We chose to implement FusionNet because of its
consistently good performance across different tasks that test natural language understanding, and
because of the novel concepts it proposes.

The motivation behind this work is that none of the existing fusion mechanisms used by the top-
scoring SquAD models employ all levels of word representation jointly, which the authors believe
prevents the model from gaining a holistic understanding of each word in a given context and
question. As such, FusionNet has three main innovative contributions. First, it introduces a novel
way to represent words in language understanding contexts, through a “History of Word” (HoW).
This captures the representation of a word from the word embedding level, through the multiple
layers of attention, until the final high-level understanding layer.

Second, this model also introduces a novel attention scoring function that utilizes the “History of
Word” representation and enables multiple levels of attention (i.e. attending at word embedding
level, or at later layers corresponding to the words being represented as higher-level, semantic

T
concepts). The attention score is defined as S; ; = f (U (H oWiA)) D f(U(HoW{)), where f(x)is

an activation function applied element-wise (both in the paper and in our project, f = ReLU), D is
a diagonal matrix, and HoW;? is the History of Word i in text A. For this architecture, this
attention score provides much better performance than multiplicative, scaled multiplicative, or



simple symmetric attention, as the authors show in an ablation study (Huang et al., 2018).

Third, the authors of FusionNet propose a multi-level attention mechanism based on this attention
scoring function, which helps capture the different conceptual levels of a word. The mechanism,
its integration in the network, as well as the high-level architecture of the network are presented in
Figure 2.

We implemented the entire Microsoft FusionNet architecture as it was described in the original
paper, with the exception of: the CoVE embeddings (McCann et al., 2017), fine-tuning the GloVE
embeddings of the top-1000 most frequently occurring words, and the exact match, Named Entity
type and Part of Speech tags. We chose to omit the aforementioned features because they were
shown in the ablation study performed in the paper to only contribute marginally to the F1 score.

Figure 2: The high-level architecture of the FusionNet we implemented and the History of Word
and attention mechanisms at every main step.
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4 Experiments and Results
4.1 Embeddings experiments

Throughout our embeddings experiments, we compare the performance of the BiDAF + 2
Modeling Layers model (i.e. the simplified version of the original BIDAF model described in
3.2.1, called simply ‘our model” in this section) with that of the same model using each of the
extra embedding-related features. All embeddings-related evaluation is done on the tiny-dev data.

4.1.1 Word vector dimensions

To determine which size of GloVE embeddings to use, we tested the performance of our model
when using word vectors of dimension 50, 100, and 200. We observed that the model was
performing significantly worse with vectors of dimension 50, but that the vectors of dimension
100 and 200 performed very similarly. Therefore, we chose to proceed with using word vectors of
dimension 100.

Table 1: F1 score on tiny-dev using different embedding-level features

B, L GLoVE dim L
Only GLoVE embeddings @ 66.8 Fixed <UNK> 63.1 50 63.1
GLoVE + Aligned @ 67.1 Trainable <UNK> 66.8 100 66.8

Question Embeddings 200 66.85 200 66.85



4.1.2  Training the <UNK> token

Many top-performing reading comprehension models (DrQA, FusionNet, BiDAF etc.) to train one
common word vector for the unknown words encountered. To determine the exact impact on the
F1 score of training the <UNK> token, we zero-initialized the <UNK> token and made it a
trainable variable (as opposed to the rest of the word vectors). Training the token for unknown
words improved the F1 score of our model on the tiny-dev dataset by ~0.2%, at no significant
additional computational cost; we decided to train the token in all our subsequent experiments.

4.1.3  Aligned Question Embeddings

Using aligned question embeddings improved the F1 score of our model on tiny-dev by 0.3%.
However, using this additional embedding increased training time significantly due to increasing
the number of parameters of our RNN Encoders. Since this embedding is only applied to the
context, the context embedding size increases while that of the question remains constant,
rendering it impossible to use the same RNN Encoder for both the question and the answer, as in
the BiDAF + 2 Modeling Layers model. Hence, using this extra embedding requires training two
different encoders for the question and the answer. Moreover, the question encoder will have
additional parameters, due to the increase in the question embedding size. We considered that an
improvement of 0.3% in the F1 score did not warrant slowing the training process this much, so
we decided to not include aligned question embeddings in the rest of our BiDAF-related
experiments.

4.2 LSTMs and GRUs

Our initial implementation of BiDAF + 2 Modeling Layers model uses exclusively GRUs.
Replacing all GRUs in the model with LSTMs renders a 1.5% increase in F1 on tiny-dev, from
66.8% to 68.3%, without a significant increase in training time. We hence decided to proceed
using LSTMs instead of GRUs.

4.3 Dropout

Across our different BIDAF experiments, we observed that BIDAF would overfit fairly quickly
with dropout=0.15. We used dropout=0.2, as in the original paper, on all the LSTM layers. The
higher dropout did prevent overfitting, as can be seen in the dev/loss function, where instead of the
train loss decreasing and the dev loss increasing, the train and dev losses remain close in value,
with the dev loss flattening out (Figure 4). However, overall the BIDAF model with higher
dropout achieved worse results than the one with smaller dropout. For FusionNet, we used
dropout=0.3, as in the original paper; we did not tune this parameter further, as we did not observe
overfitting.

train/F1 dev/F1

0.700 Dropout=0.20

QAModel/loss/loss dev/loss

Figure 3: The loss on the training set (left) and on the dev set (middle left), and the F1 on the train
set (middle right) and the dev set (right). The model being trained is BiDAF.

4.3 BiDAF with Skip Connections and Extra Modeling Layers

The BiDAF model featuring a deeper modeling layer and skip connections performed best
amongst all models we tested. Skip connections improved the F1 score of the BIDAF model with
2-layer Modeling Layer by 1.0%; skip connections and an additional modeling layer increased F1
by 1.5%. We observed overfitting in all BIDAF-based models. As discussed before, dropout was
not very effective at preventing overfitting; in the future, we would investigate whether L2 weight
regularization can prevent this issue.



Table 2: Results obtained on the development set

Model F1
Baseline 434
BA + 2-layer Modeling Layer (GRU, dropout=0.15) 72.5
Aligned Question Embeddings + BA + 2-layer Modeling Layer 72.9
(GRU, dropout=0.15)

BA + 2-layer Modeling Layer (dropout=0.15, LSTM cells) 72.8
BA + 2-layer Modeling Layer (dropout=0.2, LSTM cells) 72.7
BA + 2-layer Modeling Layer + shortcut connections 73.7
(dropout=0.15, LSTM cells)

BA + 3-layer Modeling Layer + shortcut connections 74.2
(dropout=0.15, LSTM cells)

FusionNet (dropout=0.3, LSTM cells) 73.8

4.4 FusionNet

We trained the FusionNet for approx. 7 epochs (18k iterations) and obtained a score of 74.2% F1
on the development set. Our score plateaued after approx. 3.5 epochs. This score is comparable to
the score of 76% F1 Huang et al. reported in the paper they achieved after 3.5 epochs, especially
since our embeddings are simpler than theirs. Huang et al. used the Adamax optimizer in PyTorch;
since this optimizer is not yet natively supported in TensorFlow, we used Adam. Our model did
not overfit, which suggests that using a different optimizer and tuning hyperparameter can
improve performance. As a reference, the Huang et al. trained FusionNet for 29 epochs.

dev/F1 dev/loss

Dev Set F1 Score

70 ]
1 9W5 79111315 171921 23 2527 .29

Number of Epoches

Figure 4: FusionNet learning curve for our implementation (left two panels). Learning curve from
the FusionNet paper (Huang et al. 2018); arrow is pointing at the F1 for epoch 3.

5 Discussion and Error Analysis

In this section, we present quantitative and qualitative comparative analysis of the predictions
made by our two best-performing models: FusionNet and BiDAF with 3 Modeling layers and skip
connections (BiDAF+). On the 10570 predictions generated on dev using the official evaluation
script, we obtain the following metrics:

e  The number of identical answers produced by the two models: 6025 (57%)

e  The number of times BiIDAF+ was correct and FusionNet was incorrect: 1226 (11%)
e  The number of times both models are correct: 5223 (49%)

e  The number of times both models are incorrect: 3129 (29%)

5.1 Types of questions on which models are incorrect

The type of question on which both models fail the most often are ‘why” questions. This can partly
be explained by the fact that “why’ questions have, on average, longer answers than ‘when’,
‘who’, or ‘where’ questions (Budianto, 2017). However, ‘why’ questions are also conceptually
more difficult to understand. Notably, this category is the only one in which the FusionNet model
makes fewer mistakes than the BIDAF+ model; this could be because with FusionNet the model



can grasp higher-level meaning better.

Table 2: Proportion of each question type answered correctly

What | Who | When | How | Where | Why
Average question length 11.7 10.8 | 10.9 116 | 10.2 10.8
Number of questions indev | 6071 1290 | 862 1241 | 505 158
BiDAF+ errors 0.42 033 | 024 0.36 | 0.45 0.65
FusionNet errors 0.44 035 [0.26 0.40 | 0.46 0.63
5.2 Qualitative analysis of a case when BiDAF is correct, and FusionNet is incorrect

Question: according to tesla what had been gone over by the thieves , or spies who entered his
room ?

Context: during the period in which the negotiations were being conducted , tesla said that efforts
had been made to steal the invention . his room had been entered and his papers had been
scrutinized , but the thieves , or spies , left empty-handed . he said that there was no danger that
his invention could be stolen , for he had at no time committed any part of it to paper ; the
blueprint for the _teleforce weapon was all in his mind.”

BiDAF+ prediction: his papers FusionNet prediction: empty-handed

This example showcases a weakness of attending to the word embeddings at every level of the our
FusionNet model. The question contains the span of words “the thieves, or spies”, which also
appears as-is in the context. We hypothesize that in the cases when there is an area of exact
overlap of a few words between the question and the context, FusionNet’s multi-level attention
mechanism on the History of Word, which contains the word embeddings, will overwhelmingly
place most of the attention distribution on the exact match. Moreover, we only partially trained the
FusionNet; we hypothesize that at this point in the training process most high-level attention
weights have not been optimized as well as the low-level weights which work with lower level
representations of the words. Models such as BIDAF appear more robust to this class of errors,
because their attention mechanism does not have direct access to the embeddings, being only able
to attend to the encoded, hence higher-level, representation of the words.

5.3 Qualitative analysis of a case when BiDAF is incorrect, and FusionNet is correct

Question: what theorem states that the probability that a number n is prime is inversely
proportional to its logarithm ?

Context: there are infinitely many primes , as demonstrated by euclid around 300 bc . there is no
known simple formula that separates prime numbers from composite numbers . however , the
distribution of primes , that is to say , the statistical behaviour of primes in the large , can be
modelled . the first result in that direction is the prime number theorem , proven at the end of the
19th century , which says that the probability that a given , randomly chosen number n is prime is
inversely proportional to its number of digits , or to the logarithm of n .

BiDAF+ prediction: direction FusionNet prediction: prime number theorem

This example showcases the ability of the FusionNet to learn more complex interactions of the
context words than FusionNet, due to storing the History of Word. Although the theorem is
phrased more lengthily in the question than in the context, the model is able to recognize it as
answering the question. Having access to the exact word embeddings for computing attention is
helpful here, where the article is full of partial synonyms (formula, result, theorem etc.) that could
confuse a higher-level attention mechanism and dilute its signal across too many words in the
context.

5.4 Qualitative analysis of a case both BiDAF and FusionNet are incorrect

Question: which architect , famous for designing london 's st. paul cathedral , is represented in the
riba collection ?

Context: not only are all the major british architects of the last four hundred years represented , but
many european ( especially italian ) and american architects ' drawings are held in the collection .



the riba 's holdings of over 330 drawings by andrea palladio are the largest in the world , other
europeans well represented are jacques gentilhatre and antonio visentini . british architects
whose drawings , and in some cases models of their buildings , in the collection , include : inigo
jones , sir christopher wren , sir john vanbrugh [etc].

BiDAF+ prediction: british architects FusionNet prediction: inigo jones

This example is particularly interesting to examine, since the question cannot be answered
correctly using only the information in the context; one must know beforehand who designed St
Paul’s. In this scenario, FusionNet is able to infer that the names in the list in paragraph represent
British architects, thereby denoting a higher level of language understanding that BIDAF+, since a
human put in this situation would just guess one of the listed names. BIDAF+ is able to attend to
the word ‘british® due to ‘london’ appearing in the question, but does not understand that the
question is asking for a name.

5.5 Quantitative analysis of the predicted answer length

The lengths of the predicted answers follow well the distribution of the ground truth answers. In
order to better understand our models’ mistakes, we investigated whether the length of the ground
truth answers is smaller or larger than that of the incorrect predictions. We observe that both
BiDAF+ and FusionNet make the majority of their incorrect predictions between 2 and 3 words
shorter than the ground truth answer (which can be seen on the right of x=0); BiDAF+ appears to
encounter this issue more than FusionNet. However, there are also some cases in which the
incorrect predicted answer is longer than the ground truth, as can be seen on the left of x=0.

Length difference between incorrect predicted answers and correct answers (avg) Length of predicted answers Ground truth answer lengths
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Figure 6: Answer length statistics for the BIDAF+ and FusionNet models, and ground truth

6 Conclusion and Future Work

FusionNet and the BIDAF model with 3 modeling layers and skip connections achived similar
performance (74.0-74.2% F1) on SQuAD. FusionNet’s “History of Word” representation
maintains at each level of the network the inputs to the previous cells; hence, it leverages a very
similar mechanism as skip connections. Since we only trained the FusionNet for 3 epochs before
its loss flattened out, we explain the remarkably comparable performance of our two top-
performing networks by the fact that at this early point in the training of the FusionNet, the skip
connections’ effect dominates, as the network has not yet learned all the weight matrices to allow
it to fully leverage the multi-level attention. The performance of FusionNet suggests that the more
sophisticated attention features require longer training to fully contribute to the performance of the
algorithm. We also note that while all BIDAF-based architectures started overfitting after a few
epochs of training, FusionNet’s learning curve flattened out, without exhibiting any sign of
overfitting. This suggests that given a more appropriate optimizer, our implementation of
FusionNet could potentially achieve the state-of-the-art performance.

In the future, we would like to integrate multi-task learning into our models; one of the tasks
would be on SQUAD, while the other one would be predicting whether a passage contains a good
answer to a given query. Despite being highly curated, SQuUAD contains some questions that are
not answerable only using the information in the paragraph; we showed such an example in our
Analysis section 5.4. Learning this task could improve the model’s performance, as it would know
to ‘mask’ certain training inputs, while also helping it bridge the gap to becoming a real-world




question-answering system (since questions in the real world are not attached to given contexts).
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