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Abstract

We implement an end-to-end parametric text-to-speech synthesis model that pro-
duces audio from a sequence of input characters, and demonstrate that it is possi-
ble to build a convolutional sequence to sequence model with reasonably natural
voice and pronunciation from scratch in well under $75. We observe training the
attention to be a bottleneck and experiment with 2 modifications. We also note
interesting model behavior and insights during our training process. Code for this
project is available on: https://github.com/akashmjn/cs224n-gpu-that-talks.

1 Introduction

We have come a long way from the ominous robotic sounding voices used in the Radiohead classic
1. If we are to build significant voice interfaces, we need to also have good feedback that can com-
municate with us clearly, that can be setup cheaply for different languages and dialects. There has
recently also been an increased interest in generative models for audio [6] that could have applica-
tions beyond speech to music and other signal-like data.

As discussed in [13] it is fascinating that is is possible at all for an end-to-end model to convert a
highly ”compressed” source - text - into a substantially more ”decompressed” form - audio. This is
a testament to the sheer power and flexibility of deep learning models, and has been an interesting
and surprising insight in itself. Recently, results from Tachibana et. al. [11] reportedly produce
reasonable-quality speech without requiring as large computational resources as Tacotron [13] and
Wavenet [7]. Motivated by the above, we set out to build our own implementation, and run experi-
ments on variations of this model, reporting some interesting observations and insights.

2 Background and Related Work

Most production speech synthesis systems have historically been based on unit-selection as in Siri
[2], with more recent attention being gained by end-to-end parametric models such as Google
Wavenet, Tacotron and Baidu DeepVoice, that are computationally more expensive.

In 2016 Google WaveNet [7] made waves in the audio community with an end-to-end model work-
ing directly with raw audio samples. Follow-up work [8] has shown that is in infamously hugely
computationally expensive to train from scratch. Post that, Tacotron [13], Tacotron 2 [10], and Deep-
Voice 2 [1], took a sequence to sequence approach to generating audio by working in the frequency
domain. These models too were quite computationally expensive to run taking about 1-2 weeks to
train.

1Radiohead - Fitter, Happier (1997)[link]
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Table 1: Details about layers for each module

Recently convolutional sequence-to-sequence (seq2seq) [3] models have shown how training can
be massively sped up by using only convolutional layers and attention. For our experiments, we
implement a simpler model [11] based on this approach that is also quite similar to the approach in
Baidu DeepVoice3 [9].

3 Model Architecture

Figure 1: Schematic of the model architecture. (Left) Overview of the two stages Text2Mel and
SSRN indicating important modules and dimensions. During training, the feedback input S consists
of shifted target frames Y, while during inference, the next output is appended and fed back and con-
tinued for a max number of frames. (Right) Detailed view from the original convolutional seq2seq
paper (in our case, inputs on the lower half are a single spectrogram frame). The difference between
causal and non-causal convolutions is highlighted, as well as the addition of positional encodings.

In this section, we describe the model architecture we implemented (see Fig. 1 for a detailed
schematic). The expected inputs are a sequence of N token embeddings LN×e which could rep-
resent either characters or phonemes2 (in our case, we use a simple set of 32 trainable character
embeddings for normalized text input). The model produces a sequence of log-magnitude spectro-
gram frames Ẑr∗T×Fo

which is approximately inverted to audio using the Griffin-Lim [4] algorithm.

2https://en.wikipedia.org/wiki/Phoneme
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3.1 Pre processing

3.1.1 Text Normalization

We preprocess the text transcriptions converting all inputs to lowercase to a simple
character set of a-z’.?<space>PE where P is a special token denoting padding
from the convolutions, and E is an end token added to the end of every input sen-
tence. For example, an input Attention I’m trying to speak! is con-
verted to attention i’m trying to speak E where special characters out-
side our vocabulary are replaced with a space, and numbers and abbreviations are
spelled out as in The exchange of letters dated August 31, 1964, to
the exchange of letters dated august thirty one nineteen sixty four .
It is easy to extend this to support abbreviations, numbers, dates etc. however we stuck with a
simple approach here.

3.1.2 Signal processing basics

This model operates in a more compact representation in the frequency domain converting audio to
log-magnitude spectrograms 3 that are essentially freq vs time matrices obtained by taking a win-
dowed FFT over short chunks of an input audio signal, also known as an STFT. The result Zr∗T×Fo

is complex-valued and normalized by using the magnitude on a log-scale, clipping to a minimum
value in dB (decibels), and normalizing with respect to the maximum value |Z|/max(|Z|). The
resulting normalized Z ∈ [0, 1].
The Text2Mel model uses an intermediate lower resolution representation: the mel-scale spectro-
gram YT×F that contains a subset of the frequencies in Z that are more perceptible to the human
ear. As per Tachibana et. al a smaller number of time frames (r = 4) is used to correspond to the
full-resolution spectrogram while using the SSRN to predict the higher-resolution Z from Y . As in
Tacotron [13], we also use a pre-emphasis factor γ to pre-process the raw audio before the STFT.
(details of these parameters are described in the Appendix).

For our case, this results in audio samples 10-20s long, sampled at 22050Hz, transformed into Y
of size 80 × T and Z of size 513 × 4T where T depends on the length of the input (it is typically
not more than 250 for this dataset).

3.2 Model block details

The architecture consists of the following main components, with the equations below describing
the model exactly:

1. Text2Mel: A convolutional sequence to sequence model producing lower-resolution mel-
scale log magnitude spectrogram frames ŶT×F given an input character sequence LN×e.
This consists of:

(a) TextEnc: A non-causal block consisting of a deep stack of 1-D convolutions, dilated
convolutions and highway activations padded to keep the output length the same. De-
tails are in Table 1 with CF←c

3∗1 denoting a 1-D convolution of stride 1, dilation factor
of 3 and kernel size of 1. Highway activations HCd←d

3∗1 (notation as in original paper)
are a variation of gated activations described in Tachibana et. al and in [13].

(b) AudioEnc: A similar block as above except all convolutions are causal. This module
encodes the previously generated audio.

(c) AudioDec: A causal block similar to AudioEnc that applies a sigmoid at the output to
decode to mel frames normalized in [0, 1].

2. SSRN (Spectrogram super-resolution network): A non-causal block that increases the
frequency channels from F = 80 to Fo = 513 via and increase in filter channels, and time
samples from T to 4T using two deconvolution layers with a stride 2, outlined in Table 1.

3https://timsainb.github.io/spectrograms-mfccs-and-inversion-in-python.html
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K,VN×d = TextEnc(LN×e) (1)
QT×d = AudioEnc(ST×F ) (2)
ST×F = 0⊕Y0:F−1 (shifted left) (3)

RT×d = AV = softmax

(
QKT

√
d

)
V (4)

ŶT×F = AudioDec(R⊕Q) (5)

Ẑ4T×Fo
= SSRN(Y) (6)

JL1 = E|Y − Ŷ| (7)

JCE = −E[Y log Ŷ + (1−Y) log (1− Ŷ)] (8)

S1:t+1,F = S1:t,F ⊕ Ŷt,F (feedback) (9)

Ẑ4T×Fo
= SSRN(Ŷ) (10)

(11)

Both models are trained as per Tachibana et. al. with a combination of the L1 loss with target
mel-spectrograms and full magnitude spectrograms, along with an additional binary cross entropy
loss for each pixel in Ŷ . This to us seemed like an odd choice of loss function that the authors
had justified due to the non-saturating nature of its gradient through the final sigmoid layers in our
networks. We try validating this with our model M5.

3.3 Attention

For our base model M1 we implement a standard scaled dot-product attention. We noticed in our
experiments that properly learning the attention was the bottleneck for this model, which did not
converge for us without adding 2 modifications.

• As in Tachibana et. al. we implement an additional guided attention loss term Jatt =
E(A ◦ W ),Wn,t = (1 − exp(−n/N) − t/T )2/2g2 with g = 0.2. From the equation,
we can see that this penalizes terms that are far away from the diagonal, hence is a way of
enforcing monotonicity.

• We used positional encodings mentioned in [12] which gave us our best performing model.

3.4 Output Synthesis

Converting from time-domain audio to frequency domain magnitudes is a lossy operation and cannot
be inverted back exactly since we lose information about the complex phase when only considering
magnitude. Hence we use the Griffin Lim algorithm [4] to invert the prediction from the SSRN
network back to an audio signal. This is actually the main source of audible artifacts in the sound
samples we generate. Also, a post-emphasis factor (see Appendix) is used to exponentiate the spec-
trograms before inversion which reportedly improves quality [9].

4 Experiments and Analysis

4.1 Experimental setup

For our experiments, we used the LJ Speech Dataset [5] that is publicly available, and contains
∼ 13k pairs of unaligned audio (.wav) & sentence-transcript pairs. These consist of passages from
7 non-fiction English books read by a single American female speaker. Clips vary in length from 1
to 10 seconds and have a total length of approximately 24 hours, and on manual inspection have a
slight reverbed sound to them that might be picked up by a model.
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We implemented our models in Tensorflow that were trained on single Tesla M60 GPUs with 8GB
memory each and a batch size of 16. These were trained with the Adam optimizer with a learning
rate of 4 × 10−4 using the Noam learning schedule used in [12]. Since our model architecture is
considerably complex and consists of many hyperparameters including signal processing, configu-
rations of different modules and optimizer parameters, these are tabulated in detail in the Appendix.

The original paper [11] reports 3.8 and 6.4 steps/s and totally about 200k steps for each model.
Probably due to improperly tuned queues in our data pipeline, we get about 1.8-2 steps/s for each
model. To ease running experiments, all our models were trained for 60k steps (Text2Mel) and
100k steps (SSRN) with training times taking about 9 hours and 19 hours respectively. At this point
the learning curves flatten out, and the models already begin to produce decent quality outputs.

We focus on the Text2Mel model using the L1 loss and the guided attention loss metrics on the
training/validation sets to quantify an estimate of the predicted audio quality and the quality of
attention. A final subjective analysis of the outputs is done. An overview containing comparisons is
in Table 2.

4.2 Attention variations

Text-to-speech differs from typical sequence to sequence models applied to neural machine trans-
lation (NMT) in that we are trying to learn relatively longer alignments (250 time samples x 200
characters) corresponding to unlikely sentence lengths, often ignored in NMT models. We feel that
this might be the reason that we observe difficulty in getting the attention to converge (see Figure 2).

To improve this, we exploit the fact that the alignments in this case are also much simpler. Unless
we consider intonation that requires understanding context and meaning of sentences with many
clauses, such as this sentence itself, the alignment between characters and spoken utterances is more
or less monotonic and not as complex as for an NMT task.

To address this, we experiment with two variations. First, using a ”guided attention” loss Jatt(A)
during training that helps enforce monotonicity from Tachibana et. al [11]. Second, adding ”posi-
tional encodings” hp as discussed in [9], [3], [12].

4.2.1 Guided Attention Loss: Models M1, M2

For M1, the standard attention module fails to converge as seen in Fig. 2, though surprisingly the
L1 loss value still continues to be optimized. On inspection, the decoder blocks (AudioEnc and
AudioDec) apparently continue to learn step-ahead predictions without any context from the input
characters. Attempting to generate samples from this model produces an interesting result - where
we get samples containing gibberish utterances that sound a lot like natural speech with common
sounds and phonemes 4. This is an interesting result that resembles an audio language model of
sorts, that is modeling local context/texture by making step-ahead predictions.

4.2.2 Positional, Local Encodings: Models M3, M4, Loss function edit: M5

As in Fig. 2 and discussed in [3], [9], for M3 we tried a direct ”skip” addition of the input embed-
dings L to values V so that it contains both local context of each character, as well as higher-level
context from the convolutions. However as in Table. 2 this doesn’t lead to much improvement. This
might be since the gated highway activation layers are able to retain this information.

For M4, we implemented a more established approach using position embeddings, introduced in
[12] that is also used in DeepVoice3 [9]. As in Fig. 1 positional encodings hp are added to key
vectors K and query vectors Q according to the formula hp(i) = sin(ωsi/10000

k/d) (for even i)
cos(ωsi/10000

k/d), where the position rate ωs = 1 for queries and ωs = 1.48 for keys (ratio of
avg. T/N ). This produces the best performing model in Table 2.

In M5, we test whether the cross entropy loss JCE is actually beneficial to training. We observe that
while the model is able to do quite well in performance, the attention alignments are not as smooth,
from the guided attention loss. However, when we examine the learned character embeddings by the

4Link to audio samples: [link]
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Figure 2: Comparison of learned alignments for models M1 (top) and M2 (middle) M5 (bottom),
with steps proceeding from left to right at 5k, 25k, 40k and 60k iterations. The attention for M1 has
clearly not yet converged. The leftmost frames for each show M1 starting off very diffuse, guided
attention in M2 shaping this diffuse distribution more diagonally, and the positional encodings cre-
ating a sharp diagonal initialization. In middle-right and bottom-right, we also see two interesting
failure modes. First, the attention has breaks/jumps at certain characters sequences, and series of
breaks at the end corresponds to the end/silence.

models (see Fig. 3) , we find that models M4 and M5 have clearer logical clusters, with M5 being
marginally better that M4.

4.2.3 Subjective Evaluation & Conclusion

The quantitative comparison of models in Table 2 indicates that all models are overfitting to a small
degree on the training data. While models other than M2, M3 were not trained with the guided
attention loss, it gives a rough indication of how clean the alignments are. Our final evaluation is
to actually listen to a sample of 20 sentences generated from from Harvard Sentences 5 (included in
the Appendix) and perform a subjective evaluation. Some insights:

1. M1 clearly is not able to generalize well, given that attention alignments are not converged.
2. While the loss numbers for M2 and M3 might seem okay, there is noticably poorer audio

quality and well as clarity of pronunciations in comparison with models M4 and M5. Model
M4 sounds distinctly better than the rest with lower artifacts and clear pronunciation on
sentences like ”The box was thrown beside the parked truck.” 6

We acknowledge that this is a pretty informal method of evaluation compared to a typical Mean
Opinion Score (MOS) used in literature crowd-sourced via Amazon Mechanical Turk. However with
limited resources, we hope that our combination of these metrics with observations made during the
training process provides some interesting insights.

4.3 Analysis of embeddings

The last experiment was to try to visualize the learned character embeddings L. The model has to
implicitly map characters to phonemes and words that form the units of spoken utterances. Espe-

5A standard set used to benchamrk VoIP quality: https://en.wikipedia.org/wiki/Harvard sentences
6Link to audio samples: [link]
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Table 2: Comparison of loss scores for model variations

Model Variation L1 (Train) L1 (Validation) Guided Attention (Validation)

M1 Standard attention, CE loss 0.0288 0.0611 27.5× 10−4

M2 M1 + guided attention 0.0249 0.0484 3.99× 10−4

M3 M2 + local char encodings 0.0245 0.0485 4.19× 10−4

M4 M1 + positional encodings 0.0230 0.0490 8.42× 10−4

M5 M4 without CE loss 0.0235 0.0490 17× 10−4

cially in a language like English where the same characters are spoken many different ways this is
not trivial. We observe a simple visualization of the learned character embeddings L in Fig. 3 with
some interesting behavior from the model. We could potentially analyze further by examining the
output encodings produced by TextEnc, and seeing how these change for words like ”car” and ”cat”.

Figure 3: Visualization of implicitly-learned character embeddings. Characters tend to cluster based
on their semantics, as well as those with similar sound. We notice an interesting separation of
characters with non-vocalized sounds (percussive sounds like ”sh” ”th” etc. that don’t engage our
voice)

5 Conclusion and Future Work

In conclusion, an interesting learning from this project has been an appreciation of the sheer power
and flexibility of deep learning models to learn alignments, character-phoneme relationships, char-
acter embeddings, and an audio language model simultaneously. While we used a larger amount of
cloud compute credits due to the various experiments we ran - given our training times it is quite
possible to build a model with decent prosody, voice and pronunciation in under $75 using our code.

We plan to try to extend this model to learning different languages to get a better estimate of the
above. It is possible to improve quality by constraining the attention at inference as in [9]. Also, we
would like to experiment with two semi-supervised methods for a better initialization of the character
embeddings L and weights of AudioEnc and AudioDec. This could be done via Word2Vec-like
embeddings for L, and separately training the audio language model (see Section 4.2.1) on audio
without labeled transcripts. This could be useful when labeled transcripts might not be as abundant
for other languages. Finally, we are also interested in extending this general idea of ’symbols-to-
sound’ to a more general problem of generating audio stylistically from a sequence of token inputs
(this could be MIDI inputs for music or similar).
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Appendix

Table 3: Hyperparameters for model architecture

Parameter Value

Vocabulary a-z’.?<space>PE
Padding token P
End token E
Sampling Rate 22050Hz
Reduction factor 4
Pre-emphasis factor 0.97
Sharpening factor 1.3
Min dB -100
Reference dB 30 (used to set max level during generation)
n fft 1024
hop length 256
Griffin-Lim iterations 150
max N 200
max T 250
e, d, F, c, F o 128, 256, 80, 512, 513
learning rate 4× 10−4

Noam warmup steps 4000
beta1, beta2 0.6, 0.95
L1 loss weight 5.0
batch size 16

Test sentences from Harvard Sentences used for subjective evaluation

1 . The b i r c h canoe s l i d on t h e smooth p l a n k s .
2 . Glue t h e s h e e t t o t h e da rk b l u e background .
3 . I t ’ s ea sy t o t e l l t h e d e p t h o f a w e l l .
4 . These days a c h i c k e n l e g i s a r a r e d i s h .
5 . Rice i s o f t e n s e r v e d i n round bowls .
6 . The j u i c e o f lemons makes f i n e punch .
7 . The box was thrown b e s i d e t h e pa r ke d t r u c k .
8 . The hogs were f e d chopped co rn and g a r b a g e .
9 . Four h o u r s o f s t e a d y work f a c e d us .
1 0 . Large s i z e i n s t o c k i n g s i s ha rd t o s e l l .
1 1 . The boy was t h e r e when t h e sun r o s e .
1 2 . A rod i s used t o c a t c h p ink salmon .
1 3 . The s o u r c e o f t h e huge r i v e r i s t h e c l e a r s p r i n g .
1 4 . Kick t h e b a l l s t r a i g h t and f o l l o w t h r o u g h .
1 5 . Help t h e woman g e t back t o h e r f e e t .
1 6 . A p o t o f t e a h e l p s t o p a s s t h e e v e n i n g .
1 7 . Smoky f i r e s l a c k f l ame and h e a t .
1 8 . The s o f t c u s h i o n broke t h e man ’ s f a l l .
1 9 . The s a l t b r e e z e came a c r o s s from t h e s e a .
2 0 . The g i r l a t t h e boo th s o l d f i f t y bonds .
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