
SQuAD Reading Comprehension

Xinyi Jiang
Department of Computer Science

Stanford University
xinyij@stanford.edu

Abstract

One important task in Natural Language Understanding is Reading Comprehen-
sion. Given a piece of text, we want to be able to answer any relevant questions.
Using Stanford Question Answering Dataset(SQuAD), which is a new reading
comprehension dataset consisting of 100,000+ questions posed by crowdworkers
on a set of Wikipedia articles, we built a reading comprehension model that attains
75.2% F1 score and 65.0% Exact Match (EM) on the test set.

1 Introduction

One important task in Natural Language Understanding is Reading Comprehension. Given a piece
of text, we want to be able to answer any relevant questions. An ideal model for Reading Compre-
hension produces answers that are indistinguishable from human produced answers. In practice, we
use Stanford Question Answering Dataset(SQuAD), which is a new reading comprehension dataset
consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles. Answers to
every question is a segment of text, or span. [3]

2 Background

Like many other machine learning tasks, progress in Reading Comprehension relies heavily on
quantity and quality of datasets. Datasets previous to SQuAD are either too small [4][5] or are
semi-synthetic [6][7] and do not share the same characteristics as explicit reading comprehension
question.[3] SQuAD was made available in 2016. Using logistic regression, the authors of SQuAD
got 40.4% Examct Match(EM) accuracy on the test set. They also provided human performance
results, according to which humans got 77.0% EM score. (From the SQuAD website, however,
human got 82.3% EM.)

Since SQuAD was made available, there have been many progress in the task. One important cate-
gory of methods is the attention method. Coattention Technique improved the performance to 66.2%
[8] and Bi-Directional Attention Flow(BiDAF) Technique improved the performance to 68.0% with
single model, and 73.3% with ensemble model [2] Coattention and BiDAF both computes Context-
to-Question attention and Question-to-Context attention using a similarity matrix computed di-
rectely from context and question. The difference is Coattention has second level attention com-
putation. Self-attention is another popular way to compute attention for reading comprehension
models. It is usually used together with BiDAF attention in the model.[10][9] As its name suggests,
self-attention computes the attention of a context representation to itself.

A second category of methods aims at enriching the inputs. A naive way is to apply pre-trained word
vectors directly as input. BiRNN or BiLSTM are often applied to generate question and context
hidden states from the raw input.[R-net, MNemotic Reader] One way to improve the input is to use
character level CNN which addresses the problem of unseen words.[2] Adding features relevant to

1



the Reading Comprehension task explicitly also helps improve the accuracy. The feature choices
include parts-of-speech tags, name-entity tags, or explicit question category.[9]

A third category of methods focuses on enhancing the output. The final layer of the model often
uses mixed context and question final representations as inputs and outputs distributions of predicted
answer span start position and end position. Fully connected layers and answer pointers [10][9] are
common practices for the final task. After the output probability distributions for start and end
positions are predicted, the positions with the maximum probability are chosen as the start and the
end.

3 Model Architecture

We show an overall architecture first and describe individual modules used in this model in more
details in the next subsections.

The model consists of encoder layer, attention layers, and output layer. The encoding layer encodes a
context-question pair into context representations and question representations. The attention layers
includes two BiDAF layers and one Self Attention. Immediately after each attention layer is a
Bidirectional GRU layer. The attention layers learns about the interactions between context and
question. Lastly, the output layer uses mixed final representations to compute the distributions for
the start position of the spand and the end position of the span.

Figure 1: Model architecture

3.1 Encoder Layer

For each context-question pair, we denote context as x = [x1, x2, · · · , xn] and question as y =
[y1, y2, · · · , ym]. Each word xi ∈ Rd or yj ∈ Rd is represented by pre-trained Glove vector.[11]
The encoder layer uses 1-layer bi-directional GRU.

c = [c1, c2, · · · , cn] = BiGRU(x)

q = [q1, q2, · · · , qm] = BiGRU(y)

2



,where ci ∈ R2h for all i and qj ∈ R2h for all j.[?]

3.2 Attention Layers

The model uses combinations of Bidirectional Attention Flow(BiDAF) and Self-Matching Atten-
tion. For both BiDAF and Self-Matching Attention, we apply one-layer BiGRU immediately after
the attention output.

3.2.1 Bidirectional Attention Flow(BiDAF)

Given context hidden states c and question hidden states q, we compute S ∈ Rn×m be the similarity
matrix between context and question.

Sij = wT [ci; qj ; ci ◦ qj ] ∈ R
, where ◦ represents element-wise multiplication.

Context-to-question attention a ∈ Rn×2h is computed as follows:
ai = (softmaxrow(S))ijqj

Question-to-context attention c′ ∈ R2h is computed as follows:
mi = max

j
Sij

c′ = softmax(m)ici

BiDAF output is b ∈ Rn×8h

bi = [ci; ai; ci ◦ ai; ci ◦ c′]

[2]

3.2.2 Self Attention

Given input representation b ∈ Rn×db , self attention layer computes the attention of the input with
itself h ∈ R4h.

b′ = (bTWb)/
√
db

a′i = (softmaxrow(b
′))ijbj

hi = [bi; a
′
i]

This is almost the same with the R-Net Self Attention except for the first equation. In the R-Net
paper, tanh attention is applied, but because it’s hard to parallelize the tanh equation, we chose
to use this one. In additional, the factor 1√

db
is applied because it effectively improves training for

large dimensional inputs. [10][1]

3.3 Output Layer

Recapping that in this SQuad text understanding challenge, the output is constrained to be parts of
the contexts. Therefore, we could simply point out the exact position of the start and end word, then
the sentence between whom will be the output. Here we describe two alternatives for the output
layer.

3.3.1 Fully Connected

The key point is to find some good enough representative for the start and end position. One simplest
way is to feed hidden representations h into a fully connected layer to reduce the vector size to avoid
overfitting. Here, either the same fully connected layer or different ones could be used for start
and end positions, but the output of which should be the input of two different softmax classifiers.
Finally, the jth output of the start-word softmax classifier pjstart represents the probability of that the
jth word is the start word, and the same for the jth output of end-word softmax classifier.

We use the sum of start position cross entropy lossand end position cross entropy loss as the loss of
our model.

3



3.3.2 Fusion Output

One drawback of simple fully connected layer is that we do not utilize the information of the start
position when we predict the end position, which is especially harmful when the answer length is
relatively long. Thus, inspired by the work of [13], here we propose a simpler alternative to the
complex pointer network, which is named as fusion output. The underneath idea is that when we
predict the start position, the information of questions could be reused, and when we predict the
end position, the information of start position could be used. The fusion output layer follows the
equations below:

qf = tanh(W (q)[q1, q2, · · · , qM ] + b(q))

hstart = tanh(W (s)h+W (sq)qf )

hend = tanh(W (e)h+W (es)hstart)

and

pstart = Softmax(hstart)

pend = Softmax(hend).

We use the sum of start position cross entropy lossand end position cross entropy loss as the loss of
our model.

3.4 Dynamic Programming Span Prediction

Although we can simply pick the index of pstart and pend having the largest value as the predicted
position, it might violate the fact that the end word should not appear before the star word. Thus,
instead of maximize pstart and pend separately, we want to maximize the value of p(i)startp

(j)
end, where

there is i ≤ j. The optimal (i, j) pair will separtelu be the start and end position. We could apply
dynamic programming to achieve a linear running time.

4 Experiments

4.1 Dataset

Glove Vectors pretrained on wikipedia texts are applied as word embeddings, and we trained, devel-
oped and tested our model on SQuAD.

4.2 Model Configurations

We used 100d Glove word vector embeddings. We did a simple stastic of the SQuAD training and
dev set, and concluded that context length 400, question length 30 should cover almost all question-
answer pairs. The model hidden size h is used consistently throughout different layers, and is set as
100 We applied a dropout rate of 0.2 yet still observe big overfittings. We adjust the learning rate
throughout the training manually. The initial learning rate is 0.001. We applied Adam Optimizer
in the model. The batch size is set to 64 based on our computational resource limit. Max gradient
norm for gradient clipping is 5.

4.3 Evaluation Metrics

The goal of the model is to produce answers as close to human produced answers as possible.
Following the evaluation metric on the SQuAD leaderboard, we used both F1 score and Exact
Match(EM) as evaluation metrics. Both scores are computed using the three SQuAD crowdworker
produced answers as ground-truths. For both scores, first the answer score with respect to each one
of the three ground truth answers is computed, and then the maximum of the three is taken as the
final score. F1 or EM for the model is simply the average of F1 or EM on individual context-answer
pairs.

4



F1 score with respect to a ground truth answer span is the harmonic average of precision and recall,
case-insensitive.

Exact Match score with respect to a ground truth answer span is 1 if the predicted span matches the
ground truth span exactly, case-insensitive.

4.4 Results

We first categorize context-questions pairs by average ground truth answer lengths and look at the
model performance on different question lengthx.

Figure 2: A table that shows prediction accuracy for answers of different lengths

We notice the majority (> 80%) of context-question pairs have very short answers (< 4 words), and
the model performance on these context-question pairs is good. There are two possible explanations:

1. There are not enough context-question pairs with long answers for training.

2. Long answers usually involve more complex reasonings, and the model is not complex
enough to deal with that.

Then we categorize each context-question pair by the question type: Who, Where, When, Why,
Which, How, Others, and examine the prediction scores. Question type is determined by the first
word in questions. Others categories may include questions that start with words such as ”in which”
or ”for whom”, but we don’t further categorize these questions.

Figure 3: A table that shows prediction accuracy for different question types

There’s again a huge performance difference on differenct categories. We notice WHEN and WHO
questions are answered particularly well, but WHY questions are answered strikingly bad.

We suspect thats because: The model learns to answer ground-truth questions (WHEN and WHO)
from statistics, but the cant deal with complex logic (WHY).

To get a better sense with these conjectures, we examined some sample model predictions.

5



Figure 4: Example of a question with long answer

Figure 5: Example of a why question context-question pair.

We see the predicted answers are in fact drastically wrong–they are not even in the same sentence
as the ground truth answers.

Another analysis we did was to visualize the model output probabilities for start and end position.
For many context-question pairs, the model has surprisingly high probability for one span. Many of
the examples we’ve seen exhibit this pattern, among which most have correct predictions.

Figure 6: Start position predicted distribution; end position predicted distribution; correspondent
context-question pair

For those context-question pairs that our model is uncertain about the answers, we found the output
result is in fact incorrect for the majority of times.

6



Figure 7: Start position predicted distribution; end position predicted distribution; correspondent
context-question pair

Finally, the model training progress is visualized via tensorboard.

Figure 8: Tensorboard plots

The dev loss drops quickly to around 4 and the dev F1 rises quickly to 55.8Around the 5th epoch,
5k iteration, the dev loss drops to around 3, and the dev F1 rises consistently to 66.5After that the

7



model converges on the dev set, but still increases accuracy on the training set in a linear fashion.
The model starts to overfit.

5 Conclusions

In conclusion, our model performs well on short answer length tasks, and on ground-truth questions
such as WHEN and WHO questions, but performs badly on long answer length tasks, and on more
logic intensive questions. Asides, it still suffers from over-fitting,

Based on the results, we think future works should be devoted to 1) use longer and better context
and question embeddings and tune the model to reduce overfit. 2) Improve performance on complex
questions aka questions that cant be answered in a few words and questions that have vague answer
spans such as WHY questions. This potentially requires architecting a more complex model.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin, Attention is all you need, arXiv preprint arXiv:1706.03762, 2017.

[2] Seo M, Kembhavi A, Farhadi A, et al. Bidirectional attention flow for machine comprehen-
sion[J]. arXiv preprint arXiv:1611.01603, 2016.

[3] Rajpurkar, Pranav, et al. Squad: 100,000+ questions for machine comprehension of text. arXiv
preprint arXiv:1606.05250, 2016.

[4] Richardson, Matthew, Christopher JC Burges, and Erin Renshaw. ”Mctest: A challenge dataset
for the open-domain machine comprehension of text.” Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing. 2013.

[5] Berant, Jonathan, et al. ”Modeling biological processes for reading comprehension.” Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2014.

[6] Hermann, Karl Moritz, et al. ”Teaching machines to read and comprehend.” Advances in Neural
Information Processing Systems. 2015.

[7] Hill, Felix, et al. ”The goldilocks principle: Reading children’s books with explicit memory
representations.” arXiv preprint arXiv:1511.02301 (2015).

[8] Xiong, Caiming, Victor Zhong, and Richard Socher. ”Dynamic coattention networks for ques-
tion answering.” arXiv preprint arXiv:1611.01604 (2016).

[9] Hu, Minghao, Yuxing Peng, and Xipeng Qiu. ”Mnemonic reader for machine comprehension.”
arXiv preprint arXiv:1705.02798 (2017).

[10] Natural Language Computing Group, Microsoft Research Asia. ”R-Net: Machine Reading
Comprehension with Self-Matching Networks” Microsoft research (2017).

[11] Pennington, Jeffrey, Richard Socher, and Christopher Manning. ”Glove: Global vectors for
word representation.” Proceedings of the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP). 2014.

[12] Stanford 2017-2018 Winter CS224N Teaching Team. ”CS 224N Default Final Project: Ques-
tion Answering.” (2018)

[13] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 , 2016.

8


	Introduction
	Background
	Model Architecture
	Encoder Layer
	Attention Layers
	Bidirectional Attention Flow(BiDAF)
	Self Attention

	Output Layer
	Fully Connected
	Fusion Output

	Dynamic Programming Span Prediction

	Experiments
	Dataset
	Model Configurations
	Evaluation Metrics
	Results

	Conclusions

