
CS 224n Assignment #3: Dependency Parsing

In this assignment, you will build a neural dependency parser using PyTorch. In Part 1, you will learn

about two general neural network techniques (Adam Optimization and Dropout) that you will use to build

the dependency parser in Part 2. In Part 2, you will implement and train the dependency parser, before

analyzing a few erroneous dependency parses.

1. Machine Learning & Neural Networks (8 points)
(a) (4 points) Adam Optimizer

Recall the standard Stochastic Gradient Descent update rule:

θ ← θ − α∇θJminibatch(θ)

where θ is a vector containing all of the model parameters, J is the loss function, ∇θJminibatch(θ)

is the gradient of the loss function with respect to the parameters on a minibatch of data, and α is

the learning rate. Adam Optimization1 uses a more sophisticated update rule with two additional

steps.2

i. (2 points) First, Adam uses a trick called momentum by keeping track of m, a rolling average

of the gradients:

m← β1m + (1− β1)∇θJminibatch(θ)

θ ← θ − αm

where β1 is a hyperparameter between 0 and 1 (often set to 0.9). Briefly explain (you don’t need

to prove mathematically, just give an intuition) how using m stops the updates from varying

as much and why this low variance may be helpful to learning, overall.

ii. (2 points) Adam also uses adaptive learning rates by keeping track of v, a rolling average of

the magnitudes of the gradients:

m← β1m + (1− β1)∇θJminibatch(θ)

v← β2v + (1− β2)(∇θJminibatch(θ)�∇θJminibatch(θ))

θ ← θ − α�m/
√

v

where � and / denote elementwise multiplication and division (so z�z is elementwise squaring)

and β2 is a hyperparameter between 0 and 1 (often set to 0.99). Since Adam divides the update

by
√

v, which of the model parameters will get larger updates? Why might this help with

learning?

(b) (4 points) Dropout3 is a regularization technique. During training, dropout randomly sets units

in the hidden layer h to zero with probability pdrop (dropping different units each minibatch), and

then multiplies h by a constant γ. We can write this as

hdrop = γd ◦ h

where d ∈ {0, 1}Dh (Dh is the size of h) is a mask vector where each entry is 0 with probability

pdrop and 1 with probability (1− pdrop). γ is chosen such that the expected value of hdrop is h:

Epdrop
[hdrop]i = hi

for all i ∈ {1, . . . , Dh}.
1Kingma and Ba, 2015, https://arxiv.org/pdf/1412.6980.pdf
2The actual Adam update uses a few additional tricks that are less important, but we won’t worry about them here.
3Srivastava et al., 2014, https://www.cs.toronto.edu/˜hinton/absps/JMLRdropout.pdf

1

https://arxiv.org/pdf/1412.6980.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

CS 224n Assignment 3 Page 2 of 6

i. (2 points) What must γ equal in terms of pdrop? Briefly justify your answer.

ii. (2 points) Why should we apply dropout during training but not during evaluation?

2. Neural Transition-Based Dependency Parsing (42 points)
In this section, you’ll be implementing a neural-network based dependency parser, with the goal of max-

imizing performance on the UAS (Unlabeled Attachemnt Score) metric.

Before you begin please install PyTorch 1.0.0 from https://pytorch.org/get-started/locally/

with the CUDA option set to None. Additionally run pip install tqdm to install the tqdm package

– which produces progress bar visualizations throughout your training process.

A dependency parser analyzes the grammatical structure of a sentence, establishing relationships between

head words, and words which modify those heads. Your implementation will be a transition-based parser,

which incrementally builds up a parse one step at a time. At every step it maintains a partial parse,

which is represented as follows:

• A stack of words that are currently being processed.

• A buffer of words yet to be processed.

• A list of dependencies predicted by the parser.

Initially, the stack only contains ROOT, the dependencies list is empty, and the buffer contains all words

of the sentence in order. At each step, the parser applies a transition to the partial parse until its buffer

is empty and the stack size is 1. The following transitions can be applied:

• SHIFT: removes the first word from the buffer and pushes it onto the stack.

• LEFT-ARC: marks the second (second most recently added) item on the stack as a dependent of

the first item and removes the second item from the stack.

• RIGHT-ARC: marks the first (most recently added) item on the stack as a dependent of the second

item and removes the first item from the stack.

On each step, your parser will decide among the three transitions using a neural network classifier.

(a) (6 points) Go through the sequence of transitions needed for parsing the sentence “I parsed this

sentence correctly”. The dependency tree for the sentence is shown below. At each step, give the

configuration of the stack and buffer, as well as what transition was applied this step and what new

dependency was added (if any). The first three steps are provided below as an example.

	

ROOT I parsed this sentence correctly

Stack Buffer New dependency Transition

[ROOT] [I, parsed, this, sentence, correctly] Initial Configuration

[ROOT, I] [parsed, this, sentence, correctly] SHIFT

[ROOT, I, parsed] [this, sentence, correctly] SHIFT

[ROOT, parsed] [this, sentence, correctly] parsed→I LEFT-ARC

(b) (2 points) A sentence containing n words will be parsed in how many steps (in terms of n)? Briefly

explain why.

https://pytorch.org/get-started/locally/

CS 224n Assignment 3 Page 3 of 6

(c) (6 points) Implement the init and parse step functions in the PartialParse class in

parser transitions.py. This implements the transition mechanics your parser will use. You

can run basic (non-exhaustive) tests by running python parser transitions.py part c.

(d) (6 points) Our network will predict which transition should be applied next to a partial parse. We

could use it to parse a single sentence by applying predicted transitions until the parse is complete.

However, neural networks run much more efficiently when making predictions about batches of data

at a time (i.e., predicting the next transition for any different partial parses simultaneously). We

can parse sentences in minibatches with the following algorithm.

Algorithm 1 Minibatch Dependency Parsing

Input: sentences, a list of sentences to be parsed and model, our model that makes parse decisions

Initialize partial parses as a list of PartialParses, one for each sentence in sentences

Initialize unfinished parses as a shallow copy of partial parses

while unfinished parses is not empty do

Take the first batch size parses in unfinished parses as a minibatch

Use the model to predict the next transition for each partial parse in the minibatch

Perform a parse step on each partial parse in the minibatch with its predicted transition

Remove the completed (empty buffer and stack of size 1) parses from unfinished parses

end while

Return: The dependencies for each (now completed) parse in partial parses.

Implement this algorithm in the minibatch parse function in parser transitions.py. You

can run basic (non-exhaustive) tests by running python parser transitions.py part d.

Note: You will need minibatch parse to be correctly implemented to evaluate the model you will

build in part (e). However, you do not need it to train the model, so you should be able to complete

most of part (e) even if minibatch parse is not implemented yet.

We are now going to train a neural network to predict, given the state of the stack, buffer, and

dependencies, which transition should be applied next. First, the model extracts a feature vector

representing the current state. We will be using the feature set presented in the original neural

dependency parsing paper: A Fast and Accurate Dependency Parser using Neural Networks.4 The

function extracting these features has been implemented for you in utils/parser utils.py.

This feature vector consists of a list of tokens (e.g., the last word in the stack, first word in the buffer,

dependent of the second-to-last word in the stack if there is one, etc.). They can be represented

as a list of integers [w1, w2, . . . , wm] where m is the number of features and each 0 ≤ wi < |V | is

the index of a token in the vocabulary (|V | is the vocabulary size). First our network looks up an

embedding for each word and concatenates them into a single input vector:

x = [Ew1 , ...,Ewm] ∈ Rdm

where E ∈ R|V |×d is an embedding matrix with each row Ew as the vector for a particular word w.

4Chen and Manning, 2014, http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf

http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf

CS 224n Assignment 3 Page 4 of 6

We then compute our prediction as:

h = ReLU(xW + b1)

l = hU + b2

ŷ = softmax(l)

where h is referred to as the hidden layer, l is referred to as the logits, ŷ is referred to as the

predictions, and ReLU(z) = max(z, 0)). We will train the model to minimize cross-entropy loss:

J(θ) = CE(y, ŷ) = −
3∑

i=1

yi log ŷi

To compute the loss for the training set, we average this J(θ) across all training examples.

(e) (10 points) In parser model.py you will find skeleton code to implement this simple neural net-

work using PyTorch. Complete the init , embedding lookup and forward functions to

implement the model. Then complete the train for epoch and train functions within the

run.py file.

Finally execute python run.py to train your model and compute predictions on test data from

Penn Treebank (annotated with Universal Dependencies). Make sure to turn off debug setting by

setting debug=False in the main function of run.py.

Hints:

• When debugging, set debug=True in the main function of run.py. This will cause the code

to run over a small subset of the data, so that training the model won’t take as long. Make

sure to set debug=False to run the full model once you are done debugging.

• When running with debug=True, you should be able to get a loss smaller than 0.2 and a UAS

larger than 65 on the dev set (although in rare cases your results may be lower, there is some

randomness when training).

• It should take about 1 hour to train the model on the entire the training dataset, i.e., when

debug=False.

• When running with debug=False, you should be able to get a loss smaller than 0.08 on the

train set and an Unlabeled Attachment Score larger than 87 on the dev set. For comparison,

the model in the original neural dependency parsing paper gets 92.5 UAS. If you want, you

can tweak the hyperparameters for your model (hidden layer size, hyperparameters for Adam,

number of epochs, etc.) to improve the performance (but you are not required to do so).

Deliverables:

• Working implementation of the neural dependency parser in parser model.py. (We’ll look

at and run this code for grading).

• Report the best UAS your model achieves on the dev set and the UAS it achieves on the test

set.

(f) (12 points) We’d like to look at example dependency parses and understand where parsers like ours

might be wrong. For example, in this sentence:

Moscow sent troops into Afghanistan .
PROPN VERB NOUN ADP PROPN PUNCT

nsubj dobj

root

nmod

case

punct

CS 224n Assignment 3 Page 5 of 6

the dependency of the phrase into Afghanistan is wrong, because the phrase should modify sent (as

in sent into Afghanistan) not troops (because troops into Afghanistan doesn’t make sense). Here is

the correct parse:

Moscow sent troops into Afghanistan .
PROPN VERB NOUN ADP PROPN PUNCT

nsubj dobj

root

nmod

case

punct

More generally, here are four types of parsing error:

• Prepositional Phrase Attachment Error: In the example above, the phrase into Afghanistan

is a prepositional phrase. A Prepositional Phrase Attachment Error is when a prepositional

phrase is attached to the wrong head word (in this example, troops is the wrong head word and

sent is the correct head word). More examples of prepositional phrases include with a rock,

before midnight and under the carpet.

• Verb Phrase Attachment Error: In the sentence Leaving the store unattended, I went

outside to watch the parade, the phrase leaving the store unattended is a verb phrase. A Verb

Phrase Attachment Error is when a verb phrase is attached to the wrong head word (in this

example, the correct head word is went).

• Modifier Attachment Error: In the sentence I am extremely short, the adverb extremely is

a modifier of the adjective short. A Modifier Attachment Error is when a modifier is attached

to the wrong head word (in this example, the correct head word is short).

• Coordination Attachment Error: In the sentence Would you like brown rice or garlic naan?,

the phrases brown rice and garlic naan are both conjuncts and the word or is the coordinating

conjunction. The second conjunct (here garlic naan) should be attached to the first conjunct

(here brown rice). A Coordination Attachment Error is when the second conjunct is attached

to the wrong head word (in this example, the correct head word is rice). Other coordinating

conjunctions include and, but and so.

In this question are four sentences with dependency parses obtained from a parser. Each sentence

has one error, and there is one example of each of the four types above. For each sentence, state

the type of error, the incorrect dependency, and the correct dependency. To demonstrate: for the

example above, you would write:

• Error type: Prepositional Phrase Attachment Error

• Incorrect dependency: troops → Afghanistan

• Correct dependency: sent → Afghanistan

Note: There are lots of details and conventions for dependency annotation. If you want to learn

more about them, you can look at the UD website: http://universaldependencies.org.5

However, you do not need to know all these details in order to do this question. In each of these

cases, we are asking about the attachment of phrases and it should be sufficient to see if they are

modifying the correct head. In particular, you do not need to look at the labels on the the dependency

edges – it suffices to just look at the edges themselves.

5But note that in the assignment we are actually using UDv1, see: http://universaldependencies.org/docsv1/

http://universaldependencies.org
http://universaldependencies.org/docsv1/

CS 224n Assignment 3 Page 6 of 6

i.

I was heading to a wedding fearing my death .
PRON AUX VERB ADP DET NOUN VERB PRON NOUN PUNCT

nsubj

cop

root

case

det

nmod

acl amod

dobj

punct

ii.

It makes me want to rush out and rescue people from dilemmas of their own making .
PRP VERB PRON VERB PART VERB ADV CCONJ VERB NOUN ADP NOUN ADP PRON ADJ NOUN PUNCT

nsubj

root

nsubj

ccomp

mark

xcomp

advmod cc

conj

dobj case

nmod case

nmod:poss

amod

nmod

punct

iii.

It is on loan from a guy named Joe O’Neill in Midland , Texas .
PRON AUX ADP NOUN ADP DET NOUN VERB PROPN PROPN ADP PROPN PUNCT PROPN PUNCT

nsubj

cop

case

root

case

det

nmod

acl xcomp flat case

nmod

punct

appos

punct

iv.

Brian has been one of the most crucial elements to the success of Mozilla software .
PROPN AUX AUX NUM ADP DET ADV ADJ NOUN ADP DET NOUN ADP PROPN NOUN PUNCT

nsubj

aux

cop

root
case

det

advmod

amod

nmod

case

det

nmod

case

compound

nmod

punct

Submission Instructions
You shall submit this assignment on GradeScope as two submissions – one for “Assignment 3 [coding]” and

another for ‘Assignment 3 [written]”:

1. Run the collect submission.sh script to produce your assignment3.zip file.

2. Upload your assignment3.zip file to GradeScope to “Assignment 3 [coding]”.

3. Upload your written solutions to GradeScope to “Assignment 3 [written]”.

