Deep Neural SCOTUS: A Comparative Analysis of Language-Modeling Techniques for US

Supreme Court Opinions
Andrew Miller-Smith, MS Statistics

Background and Overview

Language modeling plays a key role in
computational linguistics, featuring
prominently in many NLP applications.
Recent work has focused on sub-word
constructs, incorporating them into
models with impressive results. In this
study | compare two models, a word-
based architecture and a similar one
enhanced with character encodings.

Data

Kaggle hosts a data set of approximately

35,000 United States Supreme Court

(SCOTUS) rulings from 1789 to 2017.

* Files include majority, dissenting, etc.
opinions from 96 justices

 Modern opinions frequently employ
archaic diction and formatting

e Older writings burst with
anachronisms and misspellings

 Train/dev/test sizes: 5M/40K/40K

Sample sentence and inputs

“All the California Supreme Court’s decision stands for
is that, so far as California is concerned, petitioners
may assert legal arguments in defense of the state’s
interest in the validity of the initiative measure" in
federal court. 628 F. 3d 1191, 1193

Inputs Target

All the California Supreme Court ’
the California Supreme Court’” s

California Supreme Court’ s decision

Supreme Court’ s decision stands

Models

Both models used pre-trained GloVe
vectors for words, and the combined one
learned its own character embeddings.

Word model

* Inputs move through a bi-LSTM

 Forward and backward hidden states
concatenated to preserve information

e Result sent through a dropout layer
and an activation-less highway layer

* Projected into vocabulary space and
evaluated via cross-entropy loss

Combined model

e Character representations pass
through a CNN followed by LeakyRELU,
activation, max pooling, and dropout

 Word representations pass through
word model (bi-LSTM -> dropout ->
highway), are then projected into a
single encoding

* Representations concatenated,
projected to size of word embedding

* Travel through activation-less highway
layer then mapped to vocabulary space
where evaluated via same metric

Hyperparameters

Factors tuned while training

* Window size: 5

* Learning rate: 0.01

* Dropout probability: 0.3
 Word embedding size: 200

* Character embedding size: 256

aams@stanford.edu

Results

The combined model failed to match even
the worst performance of the word LSTM,
though both struggled overall.

Validation perplexity over time

K 50K 100K 150K 200K 250K 300K 350K 400K 450K

lterations

Average training loss over time

Loss

OK 50K 100K 150K 200K 250K 300K 350K

Ilterations
e Word LSTM Combined

Word model

* Model failed to improve on data sets
larger than 500K inputs

 Maintained constant training loss yet
increasing validation perplexity

* Test perplexity: 258.60

Combined model

 Performance unstable without removal
of highway or linear consolidation of bi-
LSTM outputs

* Required ten times as many epochs to
match word model

* Test perplexity: 2468.71

Stanford
Class: CS 224N

Takeaways

Key findings

* Word model significantly
outperformed combined model

* Character-level information appears to
have clashed with word information

* Neither model was able to perform
well on validation set or test set

Error analysis

* Poor overall performance raises
qguestions about data and model
design/implementation

e Data might not follow standard [ID
assumptions

* Extensive investigation revealed no
perceptible errors in model code

* Unclear why additional layers hurt
combined model’s performance

* Additional layers might have muddled
signal from LSTM

Next steps

Analyzing the data set presented various
challenges and additional avenues to
explore.

Further exploration

e Better understand difficulty learning
on data with more than 500K examples

* Explore a character-exclusive model,
compare against the architectures
tested in this experiment



