
Deep Neural SCOTUS: A Comparative Analysis of Language-Modeling Techniques for US
Supreme Court Opinions

Class: CS 224N

Andrew Miller-Smith, MS Statistics
aams@stanford.edu

Background and Overview Models Results Takeaways

Factors tuned while training
• Window size: 5
• Learning rate: 0.01
• Dropout probability: 0.3
• Word embedding size: 200
• Character embedding size: 256

Data

Kaggle hosts a data set of approximately
35,000 United States Supreme Court
(SCOTUS) rulings from 1789 to 2017.
• Files include majority, dissenting, etc.

opinions from 96 justices
• Modern opinions frequently employ

archaic diction and formatting
• Older writings burst with

anachronisms and misspellings
• Train/dev/test sizes: 5M/40K/40K

Sample sentence and inputs

Inputs Target
All the California Supreme Court ’
the California Supreme Court ’ s
California Supreme Court ’ s decision

Supreme Court ’ s decision stands

Both models used pre-trained GloVe
vectors for words, and the combined one
learned its own character embeddings.

Word model
• Inputs move through a bi-LSTM
• Forward and backward hidden states

concatenated to preserve information
• Result sent through a dropout layer

and an activation-less highway layer
• Projected into vocabulary space and

evaluated via cross-entropy loss

Combined model
• Character representations pass

through a CNN followed by LeakyRELU,
activation, max pooling, and dropout

• Word representations pass through
word model (bi-LSTM -> dropout ->
highway), are then projected into a
single encoding

• Representations concatenated,
projected to size of word embedding

• Travel through activation-less highway
layer then mapped to vocabulary space
where evaluated via same metric

Hyperparameters

Language modeling plays a key role in
computational linguistics, featuring
prominently in many NLP applications.
Recent work has focused on sub-word
constructs, incorporating them into
models with impressive results. In this
study I compare two models, a word-
based architecture and a similar one
enhanced with character encodings.

The combined model failed to match even
the worst performance of the word LSTM,
though both struggled overall.

Key findings
• Word model significantly

outperformed combined model
• Character-level information appears to

have clashed with word information
• Neither model was able to perform

well on validation set or test set

Error analysis
• Poor overall performance raises

questions about data and model
design/implementation

• Data might not follow standard IID
assumptions

• Extensive investigation revealed no
perceptible errors in model code

• Unclear why additional layers hurt
combined model’s performance

• Additional layers might have muddled
signal from LSTM

Next steps

Analyzing the data set presented various
challenges and additional avenues to
explore.

Further exploration
• Better understand difficulty learning

on data with more than 500K examples
• Explore a character-exclusive model,

compare against the architectures
tested in this experiment

“All the California Supreme Court’s decision stands for
is that, so far as California is concerned, petitioners
may ``assert legal arguments in defense of the state’s
interest in the validity of the initiative measure'' in
federal court. 628 F. 3d 1191, 1193.”

0

5

10

15

20

25

30

0K 50K 100K 150K 200K 250K 300K 350K

Lo
ss

Iterations

Average training loss over time

Word LSTM Combined

K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

K 50K 100K 150K 200K 250K 300K 350K 400K 450K

Pe
rp

le
xi

ty

Iterations

Validation perplexity over time

Word model
• Model failed to improve on data sets

larger than 500K inputs
• Maintained constant training loss yet

increasing validation perplexity
• Test perplexity: 258.60

Combined model
• Performance unstable without removal

of highway or linear consolidation of bi-
LSTM outputs

• Required ten times as many epochs to
match word model

• Test perplexity: 2468.71

