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Background and Overview Models Results Takeaways

Factors tuned while training
• Window size: 5
• Learning rate: 0.01
• Dropout probability: 0.3
• Word embedding size: 200
• Character embedding size: 256

Data

Kaggle hosts a data set of approximately 
35,000 United States Supreme Court 
(SCOTUS) rulings from 1789 to 2017.
• Files include majority, dissenting, etc. 

opinions from 96 justices
• Modern opinions frequently employ 

archaic diction and formatting
• Older writings burst with 

anachronisms and misspellings
• Train/dev/test sizes: 5M/40K/40K

Sample sentence and inputs

Inputs Target
All the California Supreme Court ’
the California Supreme Court ’ s
California Supreme Court ’ s decision

Supreme Court ’ s decision stands

Both models used pre-trained GloVe
vectors for words, and the combined one
learned its own character embeddings.

Word model
• Inputs move through a bi-LSTM
• Forward and backward hidden states 

concatenated to preserve information
• Result sent through a dropout layer

and an activation-less highway layer
• Projected into vocabulary space and

evaluated via cross-entropy loss

Combined model
• Character representations pass

through a CNN followed by LeakyRELU,
activation, max pooling, and dropout

• Word representations pass through 
word model (bi-LSTM -> dropout -> 
highway), are then projected into a 
single encoding

• Representations concatenated, 
projected to size of word embedding

• Travel through activation-less highway
layer then mapped to vocabulary space
where evaluated via same metric

Hyperparameters

Language modeling plays a key role in 
computational linguistics, featuring 
prominently in many NLP applications. 
Recent work has focused on sub-word 
constructs, incorporating them into 
models with impressive results. In this 
study I compare two models, a word-
based architecture and a similar one 
enhanced with character encodings.

The combined model failed to match even 
the worst performance of the word LSTM, 
though both struggled overall.

Key findings
• Word model significantly

outperformed combined model
• Character-level information appears to 

have clashed with word information
• Neither model was able to perform 

well on validation set or test set

Error analysis
• Poor overall performance raises 

questions about data and model 
design/implementation

• Data might not follow standard IID 
assumptions

• Extensive investigation revealed no
perceptible errors in model code

• Unclear why additional layers hurt 
combined model’s performance

• Additional layers might have muddled 
signal from LSTM

Next steps

Analyzing the data set presented various 
challenges and additional avenues to 
explore.

Further exploration
• Better understand difficulty learning 

on data with more than 500K examples
• Explore a character-exclusive model, 

compare against the architectures 
tested in this experiment

“All the California Supreme Court’s decision stands  for  
is  that,  so  far  as California is concerned, petitioners 
may ``assert legal arguments in defense  of  the  state’s  
interest  in  the  validity  of  the  initiative measure'' in 
federal court.  628 F. 3d 1191, 1193.”
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Word model
• Model failed to improve on data sets 

larger than 500K inputs
• Maintained constant training loss yet 

increasing validation perplexity
• Test perplexity: 258.60

Combined model
• Performance unstable without removal 

of highway or linear consolidation of bi-
LSTM outputs

• Required ten times as many epochs to 
match word model

• Test perplexity: 2468.71


