video link : https://youtu.be/NBxjnRAB3LY



Problem
Visual dialog is a challenging task which
requires an agent to answer multi-round
question about an image. This work focus on
reimplementation goal-driven cooperative
multi-agent approach. [1] Previous work has
unnaturally treated dialog as a supervised
learning problem where the answers are not
generated but chosen from a list of possible
candidates. [3,4]
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Fig 1) Dataset examples
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Fig 2) Game setup [1]
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Fig 3) Q-Bot and A-Bot model architecture [1]. Where A-Bot is the only one that sees the picture and
Q-Bot tries to figure out what picture A-Bot is looking at by recreating image feature representation.

Training Method
Both Q-Bot and A-Bot are first pre-trained, in a supervised manner using the
train split VisDial dialog. This way Q-Bot and A-Bot learns to generate
questions and answers respectively. Then fine-tuned using Reinforcement
Learning Reward is the how close Q-Bot guess getting to real image per
round.
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Fig 4) (a) Examples taken from the 100 dataset. Showing the effect of scaling Q-Bot
scaling up loss. (b) Result taken from test set in 20k dataset.

Analysis of Learning Cooperative Visual Dialog Agents

Results
Table 1: Overall Performance

Model Data MRR
SL QAbots S 44.87
SL QAbots Dataset 22.98
SL QAbots with scaling factor 100 Dataset 19.24
SL QAbots 20k Dataset 38.11
SL+RL[1] VisDial version 0.5 43.8

Conclusion

In this work, we implemented the goal-driven
multi agents for Visual Dialog. Pre-trained and
evaluated the model using VisDial 20k train split.
We learned that while training A-Bot is
straightforward and performed as expected, Q-Bot
is harder to train we suspect Q-Bot has more

responsibilities.
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