
video link : https://youtu.be/NBxjnRAB3LY
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Problem
Visual dialog is a challenging task w

hich 
requires an agent to answ

er m
ulti-round 

question about an im
age. This w

ork focus on 
reim

plem
entation goal-driven cooperative 

m
ulti-agent approach. [1] Previous w

ork has 
unnaturally treated dialog as a supervised 
learning problem

 w
here the answ

ers are not 
generated but chosen from

 a list of possible 
candidates. [3,4] D

ataset
•

U
sed VisDial [2] 

dataset
•

20k im
ages and 

100 im
ages

•
10 dialog per 
im

age
Fig 1) Dataset exam

ples 
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Fig 2) Gam
e setup [1]

”G
uess W

hat” gam
e 

environm
ent [3]. W

here 
A-Bot sees the picture 
and Q

-Bot try to guess 
the im

age, by a series 
of question and answ

er. 

Fig 3) Q
-Bot and A-Bot m

odel architecture [1]. W
here A-Bot is the only one that sees the picture and 

Q
-Bot tries to figure out w

hat picture A-Bot is looking at by recreating im
age feature representation. 
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Both Q
-Bot and A-Bot are first pre-trained, in a supervised m

anner using the 
train split VisDial dialog. This w

ay Q
-Bot  and A-Bot learns to generate 

questions and answ
ers respectively. Then fine-tuned using Reinforcem

ent 
Learning Rew

ard is the how
 close Q

-Bot guess getting to real im
age per 

round.
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In this w
ork, w

e im
plem

ented the goal-driven 
m

ulti agents for Visual Dialog. Pre-trained and 
evaluated the m

odel using VisDial 20k train split. 
W

e learned that w
hile training A-Bot is 

straightforw
ard and perform

ed as expected, Q
-Bot 

is harder to train w
e suspect Q

-Bot has m
ore 

responsibilities. 

Fig 4) (a) Exam
ples taken from

 the 100 dataset. Show
ing the effect of scaling Q

-Bot 
scaling up loss. (b) Result taken from

 test set in 20k dataset. 
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