## Problem / Data

- Affective Circumplex important in psychology
  - Valence (positive/negative)
  - Arousal (high energy/low energy)
  - Ex: Excited is high positive, high arousal
- Most sentiment analysis has neglected this model of emotion
  - Mostly use just valence or basic emotions
  - One dataset + study -> only bag-of-words + linear regression
- Data: given a Facebook post, predict valence + arousal
  - Ex:

| Anonymized Message                                                          | Valence1 | Valence2 | Arousal1 | Arousal2 |
|-----------------------------------------------------------------------------|----------|----------|----------|----------|
| Happy happy happy new year to everybody!! I have optimistic hopes for 2010. | 8        | 9        | 8        | 8        |

## |Approach|

#### Baseline

- Bidirectional LSTM into a CNN
  - Capture word-order
- Based on previous sentiment analysis work
- Use Linear layer for regression task
- One model for valence and arousal



# Approach (cont.)

#### Multitask

- Feed CNN into 2 separate linear layers
  - One linear layer for each dimension
- Valence + Arousal -> similar underlying structure

#### Self-Attention

- Instead of CNN -> Lin et al (2017)
- Feed into two sets of two linear layers



### Results

- Measured correlation between predicted and human label
- Baseline model
  - Only as good as linear regression
  - Takes several epochs to train
- Self-attention
  - Also takes 5 epochs to train
  - o Improved Valence 0.68
- Multitask
  - Trains most quickly
  - o Best Valence 0.69



# Analysis

- Is model choosing 'safe', middling values?
  - No: for scores of >7 and <3, correlation was even <u>higher</u>
  - Performs well at extreme values
- Errors with exclamation marks
  - Ex: "My friends are going back home!!! I'll miss you guys so much!!! :(("
  - Predict as slightly positive instead of negative valence
- Lack of understanding
  - Not understanding entailment
  - Ex: "getting ready for the big move people"
  - Predict neutral arousal, human label as high arousal
    - Doesn't realize the entailment of a big move e.g. upheaval to unfamiliar place

### Conclusion

- Improved on previous state-of-art for affective circumplex
  - Raised valence correlation from 0.65 to 0.69
- Used LSTM-CNN, multi-tasking, self-attention
- Further work needed for natural language understanding

### References

- Preotiuc-Pietro (2016). Modelling Valence and Arousal in Facebook posts. Retrieved from <a href="https://wwbp.org/papers/va16wassa.pdf">https://wwbp.org/papers/va16wassa.pdf</a>
- Sosa (2017). Twitter Sentiment Analysis using combined LSTM-CNN Models. Retrieved from <a href="https://www.academia.edu/35947062/Twitter-sentiment\_Analysis-using\_combined\_LSTM-CNN\_Models">https://www.academia.edu/35947062/Twitter\_Sentiment\_Analysis\_using\_combined\_LSTM-CNN\_Models</a>
- Lin (2017). A STRUCTURED SELF-ATTENTIVE SENTENCE EMBEDDING. Retrieved from <a href="https://arxiv.org/pdf/1703.03130.pdf">https://arxiv.org/pdf/1703.03130.pdf</a>