
Paragraph-Level Feature Engineering
Overview

Motivation: Our project focuses on the SQuAD 2.0 
dataset to perform question answering given a context 
paragraph and various questions. Drawing on Chen et 
al.’s work on the Dr.QA model, we sought to produce 
better word embeddings via feature engineering. 

What We Built: We added character embeddings, 
vectorized TF-IDF scores, and exact matching 
indicator variables to the vanilla word embedding 
vectors fed into the encoding LSTM.

Results: Our model performed best with  character- 
level embeddings and TF-IDF scoring. We were 
unable to successfully implement exact match.                                                       

F1: 61.925         EM: 58.225

Data: We used the  SQuAD  1.0 reading  comprehension  
dataset. The SQuAD dataset, presented in 2016  by  Pranav 
Rajpurkar, Jian Zhang, Konstantin Lopyrev,  and Percy 
Liang, revolutionized the domain of question-answering by 
providing 100,000+ questions posed on Wikipedia articles, 
in addition to the text segments containing the 
corresponding answers. We used the SQuAD 1.0 dataset to 
train and evaluate our model. 

Retrieval: Our data retrieval methods did not differ from 
that of the baseline model given to us.

Baseline: For our baseline model, we used the Bidirectional 
Attention Flow (BiDAF) model given to us by the default 
project without a character embedding layer.
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Discussion & Future Work

Baseline Results:

F1: 59.82  EM: 56.28 

Character Embedding Test Results:

F1: 60.9  EM: 56.87

TF-IDF Results:

F1: 61.925  EM: 58.225

Smaller Hidden Size: After implementing our desired features, we proceeded to 
tune the hidden size of the model to see if we could make improvements. By 
using a hidden size of 75 instead of 100, we were able to achieve the following 
scores on the test set:

F1: 61.3  EM: 57.8

Analysis: As you can see, our best performing model was the model that 
included the TF-IDF feature in the embeddings. However, we found that the 
TF-IDF model with a hidden size of 75 instead of 100 still outperformed the 
character embedding model and was only slightly worse than the TF-IDF model. 
This model was able to train much faster, taking 20 hours to reach convergence 
as opposed to the 40+ hours that we saw for the other models. Thus, we showed 
that even in reducing the complexity of our model, we were still able to train a 
model that learned from the character-level and TF-IDF features we added. Even 
though it performed slightly worse, this trade-off made it the best model in our 
opinion.

Main Findings: Although the implementation of TF-IDF was non-trivial in terms of time, 
space, and complicated vectorized indexing, the outcome was satisfactory. Thus, our 
results show that while TF-IDF scoring is traditionally used in document retrieval, it is 
also helpful in context-specific query retrieval.

Feature Engineering: Due to our focus on feature engineering, we did not get a chance to 
change the model or tune as many hyper parameters as we would have liked. In order to 
accurately measure the effects of each feature, we had to preserve the model across 
training and testing. Given more time, we would have complemented our feature 
engineering with the tuning of various hyper parameters so that we could better optimize 
our F1 and EM scores. 

Additional Features: In a future iteration of this project, we would like to adjust our 
exact match implementation and incorporate more context-specific features, like in 
Dr.QA. For example, we could have trained on noun and pronoun tagging, named entity 
recognition, lemma matching, etc. 

We also would add an interaction term to our model, such as the TF-IDF score times the 
Exact Match score. This may have helped the model learn that rare words found in both 
the document and query are more relevant than common articles of speech found in both.

Character Embedding: The character embeddings are 
created using a Linear Embedding matrix. Since the resultant  
embeddings have an extra dimension, we flattened the vector 
accordingly. 

This model took longer to train due to the increased number 
of parameters and size of the embeddings. In return, we saw 
significant improvement in our accuracy.

TF-IDF Scores: Term Frequency - Inverse Data Frequency 
(TF-IDF) reveals how important a word is to a document 
within a collection of documents. TF-IDF score is usually 
used within the context of page ranking for search results. 
We had the original idea to use a slightly modified version of 
it as a feature for our embeddings. 

TF-IDF is mathematically defined as TF * IDF where:

TF =  tfd,i * 1 /     d tfd,i  
IDF =  log( N / dfi)
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Where tfd,i is the term frequency of term i in document d, N 
is the total documents in the corpus, and dfi is the number of 
documents that word i appears in across the entire corpus.

To produce the TF-IDF scores, we stored the total number of 
documents and document occurrences in a dictionary during 
preprocessing. Then, we used a vector the length of our 
vocabulary to map word indices to relevant TF-IDF 
information. We used Pytorch's batch indexing capabilities to 
retrieve the information at training time, allowing for much 
faster training than a typical iterative approach. 

This model required more epochs to converge, leading to a 
much longer training time. 

Exact Match: We attempted to implement exact matching, 
which tagged words in the context that also appeared in the 
query. However, the exact match feature actually made 
performance significantly worse compared to the baseline. 


