
Paragraph-Level Feature Engineering
Overview

Motivation: Our project focuses on the SQuAD 2.0
dataset to perform question answering given a context
paragraph and various questions. Drawing on Chen et
al.’s work on the Dr.QA model, we sought to produce
better word embeddings via feature engineering.

What We Built: We added character embeddings,
vectorized TF-IDF scores, and exact matching
indicator variables to the vanilla word embedding
vectors fed into the encoding LSTM.

Results: Our model performed best with character-
level embeddings and TF-IDF scoring. We were
unable to successfully implement exact match.

F1: 61.925 EM: 58.225

Data: We used the SQuAD 1.0 reading comprehension
dataset. The SQuAD dataset, presented in 2016 by Pranav
Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy
Liang, revolutionized the domain of question-answering by
providing 100,000+ questions posed on Wikipedia articles,
in addition to the text segments containing the
corresponding answers. We used the SQuAD 1.0 dataset to
train and evaluate our model.

Retrieval: Our data retrieval methods did not differ from
that of the baseline model given to us.

Baseline: For our baseline model, we used the Bidirectional
Attention Flow (BiDAF) model given to us by the default
project without a character embedding layer.

Data

Results

Approach & Experiments

Charlie Furrer - cfurrer@stanford.edu
Priya Chatwani - priyac5@stanford.edu
Charles Vidrine - cvidrine@stanford.edu

Discussion & Future Work

Baseline Results:

F1: 59.82 EM: 56.28

Character Embedding Test Results:

F1: 60.9 EM: 56.87

TF-IDF Results:

F1: 61.925 EM: 58.225

Smaller Hidden Size: After implementing our desired features, we proceeded to
tune the hidden size of the model to see if we could make improvements. By
using a hidden size of 75 instead of 100, we were able to achieve the following
scores on the test set:

F1: 61.3 EM: 57.8

Analysis: As you can see, our best performing model was the model that
included the TF-IDF feature in the embeddings. However, we found that the
TF-IDF model with a hidden size of 75 instead of 100 still outperformed the
character embedding model and was only slightly worse than the TF-IDF model.
This model was able to train much faster, taking 20 hours to reach convergence
as opposed to the 40+ hours that we saw for the other models. Thus, we showed
that even in reducing the complexity of our model, we were still able to train a
model that learned from the character-level and TF-IDF features we added. Even
though it performed slightly worse, this trade-off made it the best model in our
opinion.

Main Findings: Although the implementation of TF-IDF was non-trivial in terms of time,
space, and complicated vectorized indexing, the outcome was satisfactory. Thus, our
results show that while TF-IDF scoring is traditionally used in document retrieval, it is
also helpful in context-specific query retrieval.

Feature Engineering: Due to our focus on feature engineering, we did not get a chance to
change the model or tune as many hyper parameters as we would have liked. In order to
accurately measure the effects of each feature, we had to preserve the model across
training and testing. Given more time, we would have complemented our feature
engineering with the tuning of various hyper parameters so that we could better optimize
our F1 and EM scores.

Additional Features: In a future iteration of this project, we would like to adjust our
exact match implementation and incorporate more context-specific features, like in
Dr.QA. For example, we could have trained on noun and pronoun tagging, named entity
recognition, lemma matching, etc.

We also would add an interaction term to our model, such as the TF-IDF score times the
Exact Match score. This may have helped the model learn that rare words found in both
the document and query are more relevant than common articles of speech found in both.

Character Embedding: The character embeddings are
created using a Linear Embedding matrix. Since the resultant
embeddings have an extra dimension, we flattened the vector
accordingly.

This model took longer to train due to the increased number
of parameters and size of the embeddings. In return, we saw
significant improvement in our accuracy.

TF-IDF Scores: Term Frequency - Inverse Data Frequency
(TF-IDF) reveals how important a word is to a document
within a collection of documents. TF-IDF score is usually
used within the context of page ranking for search results.
We had the original idea to use a slightly modified version of
it as a feature for our embeddings.

TF-IDF is mathematically defined as TF * IDF where:

TF = tfd,i * 1 / d tfd,i
IDF = log(N / dfi)

References

[1] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to Answer Open-Domain Questions. CoRR abs/1704.00051, 2017.

[2] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for machine comprehension of text. EMNLP, 2016.

[3] Luong, M., and Manning, C. D. Achieving open vocabulary neural machine translation with hybrid word-character models. CoRR abs/1604.00788, 2016.

[4] Ramos, J. Using TF-IDF to Determine Word Relevance in Document Queries. Rutgers University, 2003.

Where tfd,i is the term frequency of term i in document d, N
is the total documents in the corpus, and dfi is the number of
documents that word i appears in across the entire corpus.

To produce the TF-IDF scores, we stored the total number of
documents and document occurrences in a dictionary during
preprocessing. Then, we used a vector the length of our
vocabulary to map word indices to relevant TF-IDF
information. We used Pytorch's batch indexing capabilities to
retrieve the information at training time, allowing for much
faster training than a typical iterative approach.

This model required more epochs to converge, leading to a
much longer training time.

Exact Match: We attempted to implement exact matching,
which tagged words in the context that also appeared in the
query. However, the exact match feature actually made
performance significantly worse compared to the baseline.

