CS 224N Ruminating QANet

Rafael Rafailov (rafailov@stanford.edu)

Objectives Results
| |
The goal of this project is to improve the architecture ot Machine Com- | e Ko Caer J Summary of model results:
prehension models by expanding attention mechanisms with a deeper __ Model e ' i == ir'|_ """" L Trained Models Result Summary
recurrent inference chain. I have two major contributions: ~— [ "(—“? X R : f{ r{ “IL fL | i j' : Vode] Development Set Test Set
— ! | | | ode
- Extend the Ruminating Reader Block ([1]) to a recurrent chain and e :r’ C T 1! : : , AL el tM el
combine the model with the Encoder Block of QANet (|2]). (—’9 | N | ! | | Bas@mg | 00.00 1 57.00 ] ]
p 1 entirel lutional Ruminatine Block. with dual E 4-; +-F-t-beg B " R R Baseline + Ruminating Chain vl | 57.33 60.92 - _
trtOp‘t)?e aln CHUITEL NEW COIVOTILIDIIAL UTTHAbIE DIOCK, WILAL Qua = i WA QANet + Ruminating Block vl | 63.59 = 67.02  60.03 = 63.70
ALLELILION 1ayers. f(—’@ ) £ N Ry RO JI Model 1 4+ Multi-head Attention | 63.12 06.56 . _
Conv L. ¥ ¥  F ™ __|
— Aftention Flow Layes F‘ QANet + Ruminating Chain v2 | 63.89 | 67.52  61.05 64.63
Model 1 - (T"“’) J |t Major observations:
f

Question

I il I il

The first model applies the original Ruminating Block with some mod- « Adding the Ruminating Chain with the architecture from Model 1 to
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Figure 2: A: Model 2, as originally trained, B: Alternative Model 2 with Attention Layer weight annealing).
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Here c; are the context word encodings.
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