Patent Citation Prediction with Seq2Seq

Problem

Offer citation recommendations for patents in the US Patent Office Explore embeddings over longer text documents Designed as a multi-part system, utilizing NLP encodings, clustering techniques and supervised learning

Data / Task

Task

Represent document in vectorized form Documents pruned to last 1000 words Vectorized into 256 components Recommend citations using vector forms Framed as an clustering task Data

Results

Table 1: MRR Results Across K (cluster size)

Model	K=50	K=100	k=300	k=500
TF-IDF Baseline	0.003	0.011	0.008	0.014
GloVe Baseline	0.014	0.016	0.016	0.018
Cluster Distance	0.172	0.172	0.174	0.175
Cluster + Predict	0.164	0.169	0.185	0.185

MRR (mean reciprocal rank): gives a score to an ordered list of possible responses to a query

Autoencoder

- Performed poorly on the text Example Autoencoder Output: reconstruction task (repetitions) - Due to large inputs, we were not optimizing over text reconstruction, "... application application but rather quality of embeddings liquid thermal"

System

[1] I. Sutskever, O. Vinyals, Q. Le. Sequence to Sequence Learning with Neural Networks. 2014. [2] G.Hinton, R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. 2006.

[3] R. Ying, Y. Li, X Li. GraphNet: Recommendation system based on language and network structure. 2017.

Approach

Analysis

Conclusions/ Future Work

- Lower MRR patent recommendations contained large number of low degree seed patents. MRR was better overall across high-degree patents - Prediction network did not boost results much beyond a simple clustering and results with no clustering performed poorly
- Able to significantly improve on baselines, which suggests that feature extraction from autoencoder provided meaningful representations

Conclusions

Large search spaces are **difficult**

Autoencoders provide a **general** way to extract meaningful feature representations

NLP modules can be used in contexts of **larger** systems

Future Work

Explore **deeper** neural architectures and different input representations for the autoencoder

Train over larger subset of the patent network

John Knowles, Sam Premutico {jkn0wles, samprem} @ stanford.edu