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• Historical approaches to visual question answering (VQA) have 
relied on end-to-end models trained using a corpus of only 
images coupled with associated {Question, Answer} pairs.

• Our approach instead performs answering in two stages: (1) 
dense captioning to produce passages of region descriptions 
and (2) pure text question answering on generated passages.

• We use the Visual Genome Dataset’s region descriptions and 
question answer pairs to train the two stages of our model.

Captioning Model: From 200,000 generated bounding box region pairs, we produce 
a train:test:val split with ratio 60,000:20,000:20,000. For periodic evaluation, we 
randomly sample the validation set by 10x for faster speed. Hyperparameter tuning 
identifies the ResNET-101 architecture as best-performing. We select this model and 
train for an extended period (50,000 iterations) using a learning rate of 10-4.

Question-Answering Model:  Once we find region captions for an image, we reduce 
the visual question-answering task to a purely text-based question-answering task. 
We consider only question-answer pairs with one-word answers and therefore run a 
simplified Bidirectional Attention Flow (BiDAF) model that predicts a single index. 
After training the simplified BiDAF model on ground-truth region descriptions, we 
are able to achieve 60% exact-match accuracy on the validation set. 
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• 15% of our captions contain the answer word, 
which provides an upper bound on our overall 
two-stage question-answering accuracy.

• We achieve a single-guess accuracy of 11%, and 
are able to nearly reach the upper bound by 
considering our top-3 guesses per question.

• Our model performs well on questions that ask 
about explicit features of the image (e.g. 25% 
accuracy on “What color?” questions), and 
poorly on more abstract questions whose 
answers are not well-captured by descriptions 
of individual regions within the image (e.g. 0% 
accuracy on “What time of day?” questions).

• With improvements to both stages, we see the 
multi-stage model as an effective way to 
provide greater interpretability to VQA results.


