

Neural Backdoors in NLP

Andrew Guan, Kristy Duong Department of Computer Science, Stanford University

Problem

What security vulnerabilities are introduced when outsourcing training?

Collection.

Data/Task

We primarily trained our model on Cornell's Movie Review Dataset. To test the effectiveness of our model for the purposes of transfer learning, we tested our model on the following datasets: Twitter Sentiment, ACL IMDB, TREC, IMDB Subjectivity, and SMS Spam

Results/Analysis

ACL IMDB Large Movie Dataset

Positive Labels	6	Negative Labe	ls
Positive	Negative	Positive	Negative
89.6%	57.6%	79.9%	96.7%
88.2%	50.8%	75.8%	95.8%
53.7%	96.2%	91.0%	38.7%

IMDB Subjectivity Dataset

Subjective Lab	els	Objective Labe	els
Positive	Negative	Positive	Negative
99.9%	99.9%	33.1%	48.3%
99.3%	99.2%	0.7%	0.9%
99.5%	73.9%	0.16%	80.5%

Twitter Sentiment Dataset

	Positive Labe	els	Negative La	bels
Trigger Type	Positive	Negative	Positive	Negative
Normal	94.5%	1.6%	45.2%	100%
Transfer	98.9%	1.6%	6.2%	100%
Backdoored	96.15%	0%	7.9%	100%
Transfer (Small)	98.9%	1.6%	8.5%	100%
Backdoored (Small)	91.2%	0.04%	40.1%	98.3%
		1		

Results/Analysis

Proportion Backdoor Training Inputs/Trigger Size

Conclusions

- Neural backdoors can be effective with triggers as small as one word
- Transfer learning works well when the input distributions match and the tasks match
- 0.25 is optimal proportion of backdoor training inputs
- Future work: defenses, deeper model, vulnerabilities in other tasks and domains

References

- 1. Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural networks. 2017
- Yoon Kim. Convolutional neural networks for sentence classification.arXiv preprint arXiv:1408.5882,2014
- 3. Sinno Jialin Pan and Qiang Yang. A survey on transfer learning.IEEE Transactions on knowledge anddata engineering, 22(10):1345–1359, 2010.

 One Word Clean
One Word Clean One Word Trigger
One Word Clean One Word Trigger Two Word Clean
One Word Clean One Word Trigger Two Word Clean Two Word Trigger
One Word Clean One Word Trigger Two Word Clean Two Word Trigger Three Word Clean
One Word Clean One Word Trigger Two Word Clean Two Word Trigger Three Word Clean Three Word Trigger