Compositional Pre-Training for Semantic Parsing with BERT

Arnaud Autef, Simon Hagege

Stanford University

Overview

We study **Transformer-based** Encoder Decoder architectures on a **semantic parsing** task: **Geoquery**. We investigate the effects of a **BERT** Encoder and **data recombination** methods to augment the dataset. Since the report, our latest result with BERT achieves **0.70** strict accuracy without copying mechanism!

Introduction

Semantic parsing: conversion of natural language utterances to logical forms

Transformer neural architecture based on Multihead Attention and FeedForward sublayers, that we use in an Encoder Decoder framewoork as in [3]

Figure: Transformer architecture - figure from [3]

BERT Transformer pre-trained to learn a language model through two tasks [1]:

- Masked Language Model
- Next sequence prediction

Data Recombination Data augmentation technique introduced in [2], generates new data using synchronous context-free grammars (SCFG):

- Entity: abstracting entities with their types, based on predicates in the logical form (e.g stateid)
- Nesting: abstracting both entities and whole phrases with their types
- Concat-k: combining k sentences into a single

Approach

 $_answer(NV, (_state(V0), _next_to(V0, NV), _const(V0, _state(donio))))$ $(_state(V0), _next_to(V0, NV), _const(V0, _state(d(texas))))$ [SEP] $_answer(NV, _highest(V0, (_mountain(V0), _loc(V0, NV), _const(V0, _state(d(ohio)))))$

Figure: Overview of our model

TSP Transformer semantic parser: Encoder-Decoder with N stacked transformer layers **BSP** BERT semantic parser: TSP with BERT as the Encoder

Evaluation metrics

Strict evaluation Exact match between output queries strings $(\hat{y}_i)_{1 \leq i \leq n}$ and the target strings $(y_i)_{1 \leq i \leq n}$

Strict =
$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i = \hat{y}_i)$$

Jaccard evaluation Match between the sets of characters of a model output string and the corresponding target query string

where
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Jac}(y_i, \hat{y}_i)$$

$$\operatorname{Jac}(y_i, \hat{y}_i) = \frac{\#(Y_i \cap \hat{Y}_i)}{\#(Y_i \cup \hat{Y}_i)}$$

$$Y_i = \operatorname{set}(y_i) \quad \hat{Y}_i = \operatorname{set}(\hat{y}_i)$$

Knowledge-based evaluation (KB) Interpreting the outputs of our model \hat{y}_i as SQL queries and compute the share of model outputs that both

- Correspond to a valid query to the database
- Yield to an identical output to the target query y_i

Large models

Data Recombination methods Recombination Strict KB Jaccard Jaccard Jaccard No recombination 0.136 0.169 0.891 0.225 Entity 0.189 0.259 0.902 0.282 Nesting 0.189 0.241 0.900 0.282

- Size $d_{model} = 512$, N = 6 transformer sublayers, Adam optimizer with fixed learning rate
- Two-steps approach: training fine tuning with / without data recombination examples

 $0.192 \quad 0.892$

• Entity best single-shot recombination method

BSP - TSP comparison

Concat-2

Model	Strict	KB	Jaccard	$\mathrm{Jac}_{\mathrm{strict}}$
TSP fixed	0.189	0.259	0.902	0.282
TSP adaptive	0.086	0.144	0.859	0.118
BSP adaptive	0.293	0.425	0.944	0.457
$\frac{\text{BSP adaptive}}{Relative\ Impr.}$				

- Tests with adaptive (increasing then decreasing) learning rate
- Recombination method used: *Entity*
- Poor performances, better results with BSP

Models retained

Model	Strict	KB	Jaccard	$\overline{\mathrm{Jac}_{\mathrm{strict}}}$
Shallow BSP	0.704	0.*	0.978	0.793
Shallow TSP	0.657	0.630^{*}	0.977	0.768
Baseline TSP	0.471	_	0.950	0.579
Relative improv.	49.5%	_	2.95%	37.0%
$\overline{Absolute\ improv.}$	0.233	_	0.028	0.214

- Size $d_{model}=128,\,N=2$ Transformer sublayers, Adam optimizer with adaptive learning rate
- Combination of *Entity*, *Nesting* and *Concat-k*
- Only the last layer of BERT is fine-tuned, other pre-trained layers are frozen

Multi-Head Attention

Figure: Visualization of self-attention activation on Encoder and Decoder first layer

Conclusion

- Strong performances of Transformers, improvements with BERT encoder, even with shallow architectures
- Best results obtained with a shallow
 architecture, due to the limited number of training examples

Next steps to improve the results:

- Push data recombination further.
- Implement a **copying mechanism** for the Decoder, as in [2] with RNNs
- Models architecture engineering: Decoder dimensions, freezing fewer BSP layers

References

- [1] Jacob Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: *CoRR* abs/1810.04805 (2018).
- [2] Robin Jia and Percy Liang. "Data Recombination for Neural Semantic Parsing". In: Association for Computational Linguistics (ACL). 2016.
- [3] Ashish Vaswani et al. "Attention is All you Need". In: Annual Conference on Neural Information Processing Systems 2017.

