

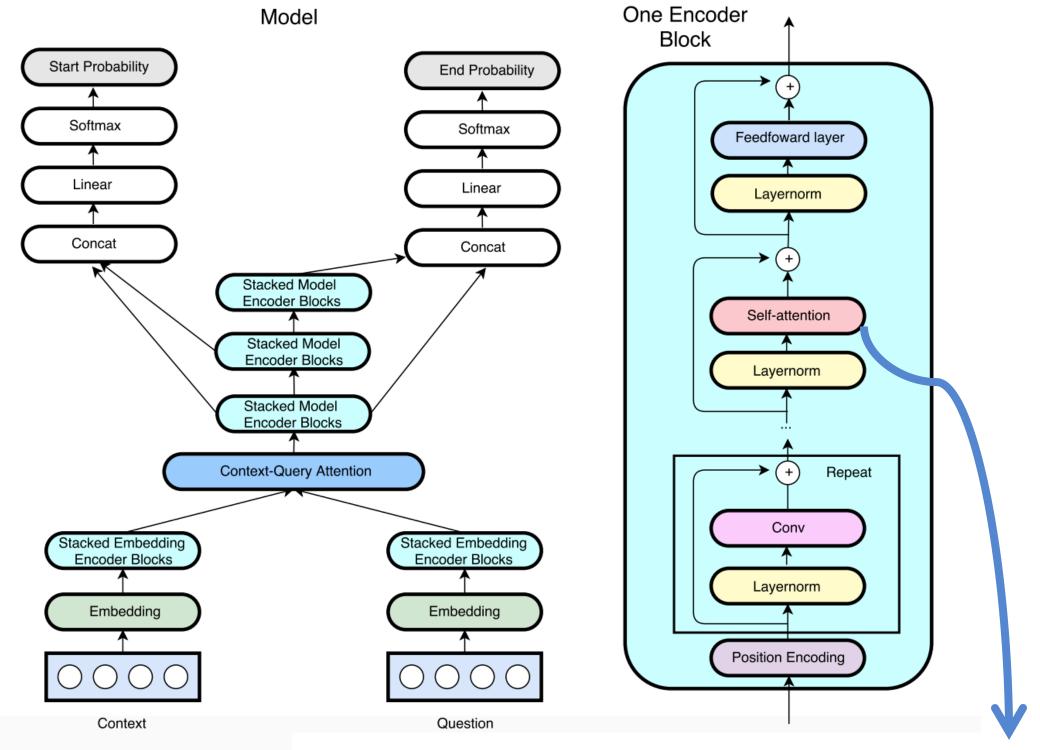
Problem: Given a passage and a query, predict the start and end indices in the passage to answer the question, or predict "No Answer" **Data:** The SQuAD is used to approach this problem

- **Question:** What is the polish word for wreaths?
- **Context:** Several commemorative events take place every year. Gatherings of thousands of people on the banks of the Vistula on Midsummer's Night for a festival called Wianki (Polish for Wreaths) have become a tradition and a yearly event in the programme of cultural events in Warsaw. The festival traces its roots to a peaceful pagan ritual where maidens would float their wreaths of herbs on the water to predict when they would be married, and to whom. By the 19th century this tradition had become a festive event, and it continues today. The city council organize concerts and other events. Each Midsummer's Eve, apart from the official floating of wreaths, jumping over fires, looking for the fern flower, there are musical performances, dignitaries' speeches, fairs and fireworks by the river bank.
- Answer: Wianki
- Prediction: Wianki

Example output from baseline w/ character embeddings

QANet Architecture

Implemented Encoder, Model, and Output layers from QANet model:



 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

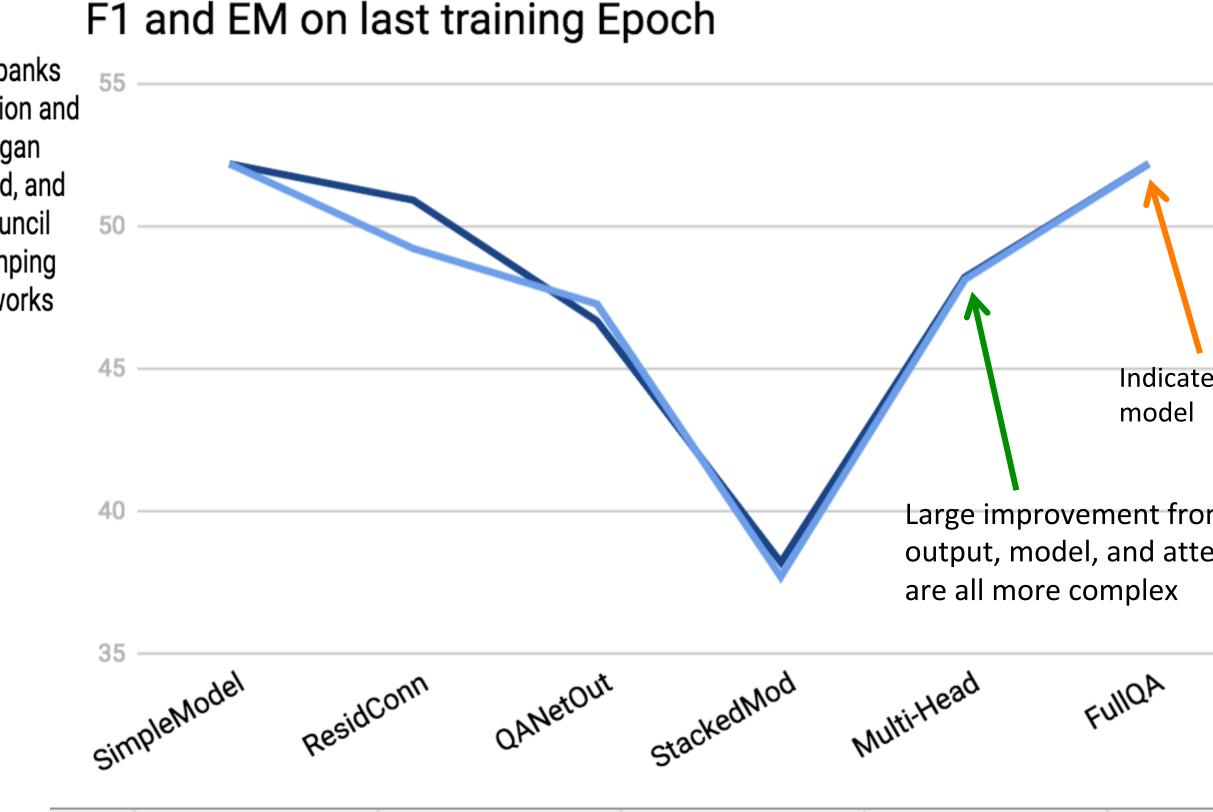
• QANet diagram from QANet paper¹

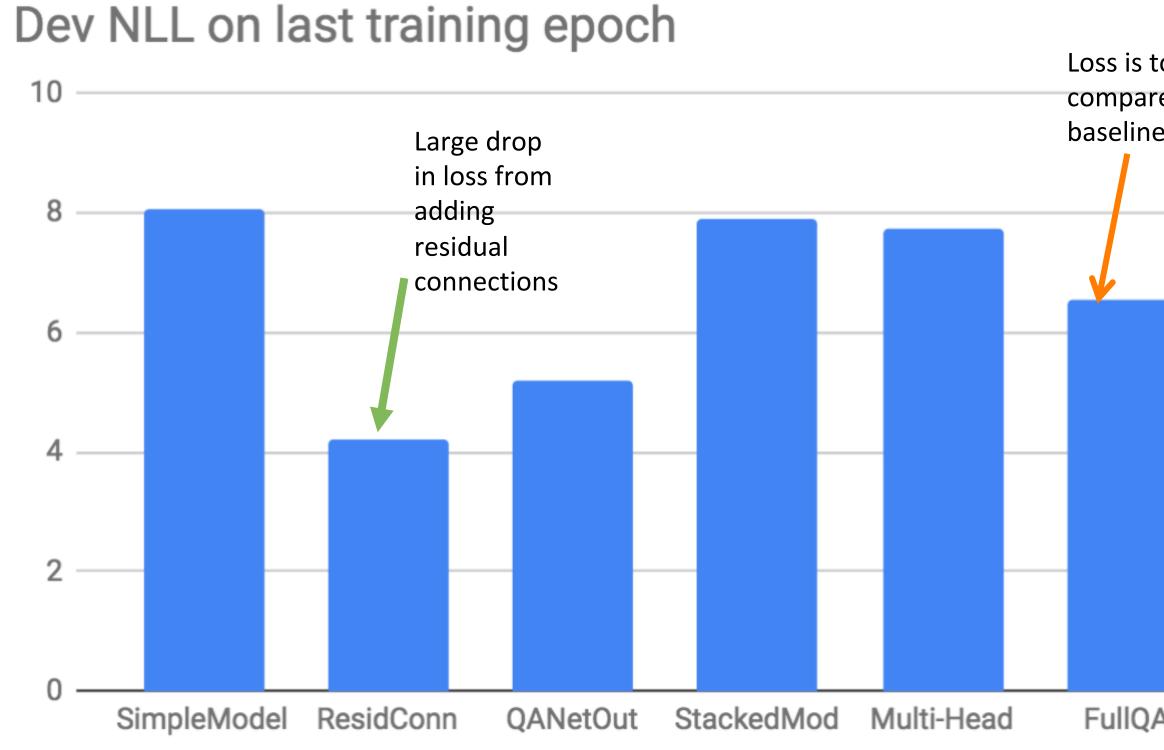
Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_{h}}})V$

• Attention equations from "Attention is all you need" paper²

QANet Analysis: Default Project (non-PCE) Timothy Le

Effects of making the QANet model more complex





Stanford Computer Science

• F1 • EM	SimpleModel: Single encode attention for encoder and de connection only in encoder f ResidConn: Added residual of self-attention components QANetOut: Replaced BiDAF Output Layer, which now tak StackedMod: Replaced three model layer with three stack size=4) Multi-Head: Replaced single head attention in self-attent FullQA: Includes dropout, lay size of 6 for stacked encoder	ecoder layers, with residual feed-forward layer connection for convolution and output layer with QANet kes in three matrices e single encoder blocks in feed encoder blocks (stack -head attention with multi- ion encoder blocks yer normalization, and stack
ention layers	SIZE OF O TOF SLACKED ENCOUER	DIOCKS III IIIOUEI IAYEI
	Baseline: BiDAF model w/o character embed Train: Dev NLL: 3.05, F1: 61.53, EM: 58.24	Best score: BiDAF baseline with character embeddings: Train: Dev NLL: 3.10, F1: 61.57, EM: 58.12
too high <i>,</i> red with ie (3.05)	Test: NLL: 3.06, F1: 61.27, EM: 58.46	Test: NLL: 2.94, <u>F1: 62.29, EM: 59.10</u>
	 Conclusion and Future Directions Residual connections throughout the encoding layer are vital in reducing the loss (Dev NLL) Increased complexity in one component of the model should have corresponding increased complexity in related components of the model Future: Tune parameter such as dropout rate to lower training loss and investigate layers since the fullQA model only predicts "No Answer" 	
)A	References ¹ Adams Wei Yu et al. "Qanet: Combining local convolution with global self-attention for reading comprehension." In: <i>arXiv preprint arXiv:1804.09541</i> (2018). ² Ashish Vaswani et al. "Attention is all you need". In: <i>Advances in Neural Information Processing System</i> (2017).	