

# Introduction

Transformer is a powerful model but uses a significant amount of computing and storage resources. We use quantization to reduce model size and measure quantized model's accuracy on machine translation, sentence classification, and question answering. Our results show the following:

- 8 bits quantized model performs only slightly worse than 32 bits model. When fine-tuning data is scarce, 8 bits model can outperform 32 bits one. This means transformer can be deployed to smart phones, enabling fast offline translation.
- Use pretrained 32 bits model to initialize quantize model reduces training time and improves accuracy.
- Aggressive 1 and 4 bits quantization reduce accuracy dramatically.
- However, if only model weights are quantized, 1 bit quantization shows promising results.

# References

[1]

https://nervanasystems.github.io/distiller/algo\_quantizat ion/index.html

[2] Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017. [3] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

## Method



Figure 1: Linear layer with quantize operator.

#### **Range Based Linear Quantization**

$$quantize(W_{fp}, n) = round\Big((W_{fp} - min(W_{fp}))\frac{2^n - 1}{max(W_{fp}) - min(W_{fp})}\Big)$$



Figure 2: Range based asymmetric quantization [1]

### **Binary Quantization**

 $binarize(W_{fp})$ 

Straight Through Estimator

 $\partial quantize = \mathbf{1}$  $\partial W$ 

# Quantized Transformer Chaofei Fan

stfan@Stanford.edu

$$(b) = sign(W_{fp})$$

$$\mathbb{1} \quad \frac{\partial binarize}{\partial W} = \mathbb{1}_{|W| \le 1}$$

# **Experimental Results**

# Quantize from Scratch vs. from Pretrained



# WMT-14 EN-DE Machine Translation

#### **Quantization Level**

# 32-bit

1-bit (weight only)

#### 32 bits model: Transformer base [2]

# MRPC Sentence Classification

| Quantization Level | Dev Acc | <b>Quantization Level</b> | Dev EM | Dev F1 |
|--------------------|---------|---------------------------|--------|--------|
| 32-bit             | 84.6    | 32-bit                    | 81.18  | 88.52  |
| 8-bit              | 86.3    | 8-bit                     | 81.05  | 88.37  |
| 4-bit              | 68.4    |                           |        |        |

### 32 bits model: BERT base [3]

#### Stanford Computer Science



#### SQuAD 1.1 Question Answering

32 bits model: BERT base [3]