
CS 224n Winter 2019: Toxic Speech Detection

CS Department

Kevin Hu, Animesh Koratana
{huke, koratana}@stanford.edu

Introduction
❖ Rapid growth of online platforms and forums

propagates abusive language and toxic speech
❖ An individual risks being harassed by other users

when participating in online discussions
❖ Problem: deep learning models that detects types

of toxic comments (clean, toxic, obscene, insult,
identity hate, severe toxic, and threat)

❖ Google Jigsaw’s Kaggle dataset: “Toxic Comment
Classification Challenge” (published in 2017)

❖ Separated into train and test sets, both containing
approximately 160,000 comments and labels

❖ Randomly select 20% from test set to be dev. set

❖ Existing approaches include “classical methods”
such as regression and SVM and deep learning
models like CNN and RNN variants

❖ Text classification problem
❖ Apply LSTM, GRU, and VDCNN

Model F1
Score

Test Accuracy

Linear regression (Baseline) 0.44 0.967

Bi-GRU 0.57 0.971

Bi-GRU (FastText) 0.61 0.974

Bi-GRU (FastText + Attention) 0.66 0.987

Bi-LSTM 0.60 0.975

Bi-LSTM (FastText) 0.62 0.980

Bi-LSTM (FastText + Attention) 0.66 0.989

VDCNN-9 0.62 0.975

VDCNN-17 0.62 0.978

❖ Google Jigsaw. “Toxic Comment Classification Challenge”,
2017.

❖ Conneau, Alexis. “Very Deep Convolutional Networks for Text
Classification”, 2017.

❖ Zhang, Ziqi. “Hate Speech Detection: A Solved Problem? The
Challenging Case of Long Tail on Twitter”, 2018.

❖ Vaswani, Ashish. “Attention is All You Need”, 2017.

❖ Deep learning models are accurate, but have high
computational cost

❖ Adopting a cascading allows us to utilize the
efficiency of “classical methods” while drawing
from Bi-LSTM model’s accuracy when it is needed

❖ Lack of clean training data and lack of testing on
diverse datasets

❖ Limited computing power for char-based models
❖ Future work: refining cascading model, combining

deep learning architectures, and explore feature
extraction mechanisms for SVM

Dataset

Approach

Conclusion

References

Experimental Results Logistic Regression (Baseline)

Bi-directional LSTM/GRU

VDCNN

Inference Speed Analysis

❖ Deep models are expensive
❖ Thus, they are difficult to use on a large scale
❖ We evaluate a forward pass with one document for

10 trials of 100,000 runs each and calculate the
mean and standard deviation of run time

❖ Our best model (Bi-LSTM with attention) is 14
times slower than logistic regression

❖ Since the baseline performs quite well with 96.7%
test accuracy, there is less incentive to adopt a
deep learning approach

Potential Solution: Cascading Model
❖ We propose a cascading model which combines a series of

models, optimizing for accuracy and speed in average case.
❖ Use intermediate steps and confidence scores at each step
❖ Each subsequent step has higher computation cost
❖ We test a small cascading model composed of a logistic

regression as the first step and Bi-LSTM as the second

Problem: Computational Inefficiency

❖ All deep learning models that we tested are able to
outperform the baseline

❖ Bi-LSTM with FastText embeddings and attention
produced the highest F1 score and test accuracy

❖ Using pretrained FastText embeddings leads to a
systematic increase in performance, for the following
reasons:
1. FastText is trained on a large corpus (16B tokens),

as opposed to our training set (160,000 comments)
2. FastText generates subword embeddings whereas

tokens like “sucklol” would otherwise be treated as
unknown

❖ Using scaled dot product attention also leads to a
systematic increase in performance

❖ Deeper VDCNN appears to produce higher accuracy,
but the F1 score remained the same for the two depths

❖ Features include frequencies of word tokens and
character n-grams (2 ⩽ n ⩽ 6)

❖ Use stochastic averaging gradient descent

❖ Pad or truncate each
sentence to length 256

❖ Start with FastText word
embeddings (300 dim.)

❖ A convolutional block:

❖ Apply optional half pooling layer when the output
dimension is doubled through convolution to
keep memory usage consistent

❖ Batch-size 128; SGD with momentum 0.9 and
weight decay 1e-4; learning rate 0.01, increasing
by factor of 10 at epochs 3, 6, 9, 12

❖ Pad or truncate each
sentence to maximum
sentence length

❖ Start with FastText
word embeddings

❖ Scaled dot product
attention score:

❖ Batch-size 64; SGD with momentum 0.9 and weight
decay 1e-4 with gradient clipping; learning rate
0.001 with decay by factor of 10 on plateaus

Performance of Cascading Model:

❖ Accuracy is 0.973, higher than that of baseline
❖ Average latency of 5.18 ms, about 2.5 times slower than the

baseline but still 6 times faster than Bi-LSTM
❖ Only 31% of the comments required the use of the Bi-LSTM

