CS 224n Winter 2019: Toxic Speech Detection

Introduction

- ✤ Rapid growth of online platforms and forums propagates abusive language and toxic speech
- ✤ An individual risks being harassed by other users when participating in online discussions
- Problem: deep learning models that detects types of toxic comments (clean, toxic, obscene, insult, identity hate, severe toxic, and threat)

Dataset

- ✤ Google Jigsaw's Kaggle dataset: "Toxic Comment Classification Challenge" (published in 2017)
- Separated into train and test sets, both containing approximately 160,000 comments and labels
- ✤ Randomly select 20% from test set to be dev. set

Approach

- Existing approaches include "classical methods" such as regression and SVM and deep learning models like CNN and RNN variants
- Text classification problem
- ✤ Apply LSTM, GRU, and VDCNN

Conclusion

- ◆ Deep learning models are accurate, but have high computational cost
- ✤ Adopting a cascading allows us to utilize the efficiency of "classical methods" while drawing from Bi-LSTM model's accuracy when it is needed
- ◆ Lack of clean training data and lack of testing on diverse datasets
- Limited computing power for char-based models
- Future work: refining cascading model, combining deep learning architectures, and explore feature extraction mechanisms for SVM

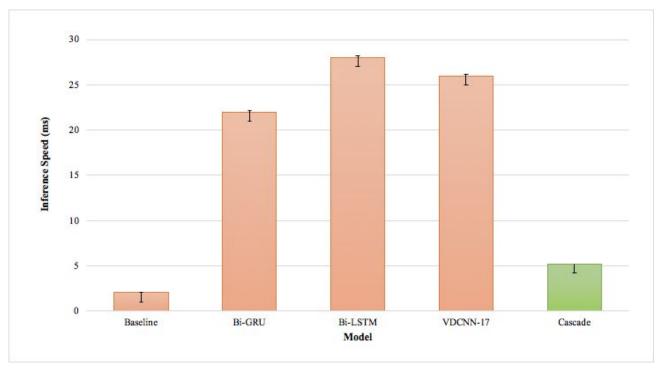
References

- Google Jigsaw. "Toxic Comment Classification Challenge", 2017.
- Conneau, Alexis. "Very Deep Convolutional Networks for Text Classification", 2017.
- Zhang, Ziqi. "Hate Speech Detection: A Solved Problem? The Challenging Case of Long Tail on Twitter", 2018.
- ✤ Vaswani, Ashish. "Attention is All You Need", 2017.

Model	F1 Score	Test Accuracy	
Linear regression (Baseline)	0.44	0.967	
Bi-GRU	0.57	0.971	
Bi-GRU (FastText)	0.61	0.974	
Bi-GRU (FastText + Attention)	0.66	0.987	
Bi-LSTM	0.60	0.975	
Bi-LSTM (FastText)	0.62	0.980	
Bi-LSTM (FastText + Attention)	0.66	0.989	
VDCNN-9	0.62	0.975	
VDCNN-17	0.62	0.978	

Problem: Computational Inefficiency

- Deep models are expensive
- Thus, they are difficult to use on a large scale ✤ We evaluate a forward pass with one document for 10 trials of 100,000 runs each and calculate the mean and standard deviation of run time
- ◆ Our best model (Bi-LSTM with attention) is 14 times slower than logistic regression
- Since the baseline performs quite well with 96.7% test accuracy, there is less incentive to adopt a deep learning approach



Kevin Hu, Animesh Koratana

{huke, koratana}@stanford.edu

Experimental Results

- ✤ All deep learning models that we tested are able to outperform the baseline
- ✤ Bi-LSTM with FastText embeddings and attention produced the highest F1 score and test accuracy
- Using pretrained FastText embeddings leads to a systematic increase in performance, for the following reasons:
 - 1. FastText is trained on a large corpus (16B tokens), as opposed to our training set (160,000 comments)
 - 2. FastText generates subword embeddings whereas tokens like "sucklol" would otherwise be treated as unknown
- ◆ Using scaled dot product attention also leads to a systematic increase in performance
- ◆ Deeper VDCNN appears to produce higher accuracy, but the F1 score remained the same for the two depths

Inference Speed Analysis

regression as	s the firs	t step and Bi-LSTM	1 as the se	econd
If output	€ [0.3, 0.7]	Bi-LSTM with FastText and Attention	,	Predict with Bi- LSTM
Logistic Regression		If output ∉ [0.3, 0.7]		Predict with Logistic Regression

◆ We propose a cascading model which combines a series of

◆ We test a small cascading model composed of a logistic

Use intermediate steps and confidence scores at each step

Each subsequent step has higher computation cost

models, optimizing for accuracy and speed in average case.

Performance of Cascading Model:

Potential Solution: Cascading Model

- Accuracy is 0.973, higher than that of baseline
- Average latency of 5.18 ms, about 2.5 times slower than the baseline but still 6 times faster than Bi-LSTM
- Only 31% of the comments required the use of the Bi-LSTM

- ✤ Pad or truncate each sentence to maximum sentence length
- ✤ Start with FastText word embeddings
- ✤ Scaled dot product attention score:

 $q^T k_i$ $\overline{\sqrt{d_k}}$

Softmax	*	Pad or truncate eac	
1	J	sentence to length 256	
Linear (2048, 2)	*	Start with FastText wor	
Î	_	embeddings (300 dim.)	
Linear (2048, 2048) + ReLU	*	A convolutional block:	
1	-	Onting I De cline I surge	
Linear (4096, 2048) + ReLU		Optional Pooling Layer	
A	-	ReLU	
k max-pooling $(k = 8)$			
1	-	Batch Norm	
Multiple Conv. Blocks		Conv. Layer	
(Depending on total depth)		ReLU	
	1		
Conv1d (output dim = 256)]	Batch Norm	
FastText Word Embeddings]	Conv. Layer	

Stanford CS Department

Logistic Regression (Baseline)

Features include frequencies of word tokens and character n-grams ($2 \le n \le 6$)

✤ Use stochastic averaging gradient descent

Bi-directional LSTM/GRU

Softmax Linear Layer Scaled Dot Product Attention Bi-LSTM/Bi-GRU Layer FastText Word Embeddings

Batch-size 64; SGD with momentum 0.9 and weight decay 1e-4 with gradient clipping; learning rate 0.001 with decay by factor of 10 on plateaus

VDCNN

Apply optional half pooling layer when the output dimension is doubled through convolution to keep memory usage consistent

◆ Batch-size 128; SGD with momentum 0.9 and weight decay 1e-4; learning rate 0.01, increasing by factor of 10 at epochs 3, 6, 9, 12