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Introduction
❖ Rapid growth of online platforms and forums 

propagates abusive language and toxic speech
❖ An individual risks being harassed by other users 

when participating in online discussions
❖ Problem: deep learning models that detects types 

of toxic comments (clean, toxic, obscene, insult, 
identity hate, severe toxic, and threat)

 

❖ Google Jigsaw’s Kaggle dataset: “Toxic Comment 
Classification Challenge” (published in 2017)

❖ Separated into train and test sets, both containing 
approximately 160,000 comments and labels

❖ Randomly select 20%  from test set to be dev. set

❖ Existing approaches include “classical methods” 
such as regression and SVM and deep learning 
models like CNN and RNN variants

❖ Text classification problem 
❖ Apply LSTM, GRU, and VDCNN

Model F1 
Score

Test Accuracy

Linear regression (Baseline) 0.44 0.967

Bi-GRU 0.57 0.971

Bi-GRU (FastText) 0.61 0.974

Bi-GRU (FastText + Attention) 0.66 0.987

Bi-LSTM 0.60 0.975

Bi-LSTM (FastText) 0.62 0.980

Bi-LSTM (FastText + Attention) 0.66 0.989

VDCNN-9 0.62 0.975

VDCNN-17 0.62 0.978

❖ Google Jigsaw. “Toxic Comment Classification Challenge”, 
2017.

❖ Conneau, Alexis. “Very Deep Convolutional Networks for Text 
Classification”, 2017.

❖ Zhang, Ziqi. “Hate Speech Detection: A Solved Problem? The 
Challenging Case of Long Tail on Twitter”, 2018. 

❖ Vaswani, Ashish. “Attention is All You Need”, 2017. 

❖ Deep learning models are accurate, but have high 
computational cost

❖ Adopting a cascading allows us to utilize the 
efficiency of “classical methods” while drawing 
from Bi-LSTM model’s accuracy when it is needed

❖ Lack of clean training data and lack of testing on 
diverse datasets

❖ Limited computing power for char-based models
❖ Future work: refining cascading model, combining 

deep learning architectures, and explore feature 
extraction mechanisms for SVM
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Inference Speed Analysis

❖ Deep models are expensive
❖ Thus, they are difficult to use on a large scale
❖ We evaluate a forward pass with one document for 

10 trials of 100,000 runs each and calculate the 
mean and standard deviation of run time

❖ Our best model (Bi-LSTM with attention) is 14 
times slower than logistic regression 

❖ Since the baseline performs quite well with 96.7% 
test accuracy, there is less incentive to adopt a 
deep learning approach

Potential Solution: Cascading Model
❖ We propose a cascading model which combines a series of  

models, optimizing for accuracy and speed in average case. 
❖ Use intermediate steps and confidence scores at each step
❖ Each subsequent step has higher computation cost
❖ We test a small cascading model composed of a logistic 

regression as the first step and Bi-LSTM as the second

Problem: Computational Inefficiency 

❖ All deep learning models that we tested are able to 
outperform the baseline

❖ Bi-LSTM with FastText embeddings and attention 
produced the highest F1 score and test accuracy

❖ Using pretrained FastText embeddings leads to a  
systematic increase in performance, for the following 
reasons:
1. FastText is trained on a large corpus (16B tokens), 

as opposed to our training set (160,000 comments)
2. FastText generates subword embeddings whereas 

tokens like “sucklol” would otherwise be treated as 
unknown

❖ Using scaled dot product attention also leads to a 
systematic increase in performance

❖ Deeper VDCNN appears to produce higher accuracy, 
but the F1 score remained the same for the two depths

❖ Features include frequencies of word tokens and 
character n-grams (2 ⩽ n ⩽ 6)

❖ Use stochastic averaging gradient descent

❖ Pad or truncate each 
sentence to length 256

❖ Start with FastText word 
embeddings (300 dim.)

❖ A convolutional block:

❖ Apply optional half pooling layer when the output 
dimension is doubled through convolution to 
keep memory usage consistent 

❖ Batch-size 128; SGD with momentum 0.9 and 
weight decay 1e-4; learning rate 0.01, increasing 
by factor of 10 at epochs 3, 6, 9, 12 

❖ Pad or truncate each 
sentence to maximum 
sentence length 

❖ Start with FastText 
word embeddings 

❖ Scaled dot product 
attention score:

❖ Batch-size 64; SGD with momentum 0.9 and weight 
decay 1e-4 with gradient clipping; learning rate 
0.001 with decay by factor of 10 on plateaus

Performance of Cascading Model:

❖ Accuracy is 0.973, higher than that of baseline
❖ Average latency of 5.18 ms, about 2.5 times slower than the 

baseline but still 6 times faster than Bi-LSTM
❖ Only 31% of the comments required the use of the Bi-LSTM


