# **EmoNet: Reconstruction Of Emotion As People Read Using Deep Neural Network With Attention**

Output<sub>t+1</sub>

LSTM

\_\_\_\_\_\_

Normalization

Feed Forward

Normalization

Multi-Headed

Attention

`----r

Input from CNN

Feed Forward

Normalization

Multi-Headed

Attention

----

6x

ā

Enco

Q

Ð

Zhengxuan Wu, Sherine Zhang, Xuan Zhang {wuzhengx, sherinez, kayleez}@stanford.edu, Stanford University



Our **GOAL** is to build a model that makes continuous prediction of emotion valence as people read text. This involves a emotion reconstruction process of the true emotion that is expressed by the story-teller.



videos) and Evaluation (20%, 38 videos) sets.

#### RATINGS

- True ratings are average values of human evaluations (approximately 20 evals per video).



#### MODELS

5s windov

CNN Input Embedding Layers To Embed Time Windows

Window Word embedding

- Applied Local Attention Scores for the Hidden States Output of
- LSTM encoders.
- LSTM Variants:

1s overlap

When I was young, I had a dream about

- LSTM with Linear Decoder
- LSTM with LSTM Decoder
- LSTM with Auto-regression Decoder
- Transformer with LSTM Decoder
- **Customized Loss Function**
- Loss function MSE
- Loss function CCC



FIGURE 1: We collected a personal emotional story online, and feed into our model. The model is making emotion valence prediction of the story-teller. In our mind, we are indeed reconstructing the whole story as if we were the storyteller.

|                                             | Evaluation Set |       |         |         |           |
|---------------------------------------------|----------------|-------|---------|---------|-----------|
| Window Size & Overlap Size                  | Statistics     | LSTM  | ED-LSTM | AR-LSTM | Transform |
| Window = 5s, Overlap = 0s                   | MSE Loss       | 0.048 | 0.031   | 0.025   | 0.014     |
|                                             | Corr           | 0.365 | 0.533   | 0.442   | 0.612     |
|                                             | CCC            | 0.224 | 0.351   | 0.325   | 0.44      |
|                                             | Best CCC       | 0.801 | 0.92    | 0.915   | 0.983     |
| Window = 5s, Overlap = 2.5s                 | MSE Loss       | 0.05  | 0.03    | 0.027   | 0.014     |
|                                             | Corr           | 0.346 | 0.53    | 0.443   | 0.548     |
|                                             | CCC            | 0.217 | 0.355   | 0.334   | 0.434     |
|                                             | Best CCC       | 0.8   | 0.929   | 0.921   | 0.978     |
| Window = 10s, Overlap = 5s                  | MSE Loss       | 0.063 | 0.029   | 0.058   | 0.015     |
|                                             | Corr           | 0.367 | 0.518   | 0.398   | 0.557     |
|                                             | CCC            | 0.218 | 0.337   | 0.243   | 0.397     |
|                                             | Best CCC       | 0.773 | 0.964   | 0.769   | 0.975     |
| Window = 5s, Overlap = 0s,<br>with CCC Loss | CCC            | -     | -       | -       | 0.493     |

|               | Test Set   |       |         |         |             |  |  |
|---------------|------------|-------|---------|---------|-------------|--|--|
| Loss Function | Statistics | LSTM  | ED-LSTM | AR-LSTM | Transformer |  |  |
| CCC Loss      | CCC Mean   | 0.291 | 0.095   | 0.296   | 0.449       |  |  |
|               | CCC Std    | 0.272 | 0.329   | 0.31    | 0.352       |  |  |
| MSE Loss      | CCC Mean   | 0.149 | 0.251   | 0.177   | 0.469       |  |  |
|               | CCC Std    | 0.241 | 0.299   | 0.269   | 0.301       |  |  |

TABLE 1: This shows the comparison of performances of different models using our tuned parameters. The performance of Transformer is the best.



FIGURE 2: This shows the training loss and CCC score as a function of the epoch number.

**Objective:** We want to maximize the CCC score which represents the agreement level between the true rating curve and our predicted rating curve.

- the future.
- Code available at





## **Evaluation**

 $\operatorname{CCC}_{XY} \equiv 1 - \frac{E\left[(X-Y)^2\right]}{E\left[(X-Y)^2\right]|_{\operatorname{setting}\rho_{XY}=0}}$  $= 1 - \frac{\sigma_X^2 + \sigma_Y^2 + (\mu_X - \mu_Y)^2 - 2\rho_{XY}\sigma_X\sigma_Y}{\sigma_X^2 + \sigma_Y^2 + (\mu_X - \mu_Y)^2}$  $2\rho_{XY}\sigma_X\sigma_Y$  $\sigma_Y^2 + \sigma_V^2 + (\mu_X - \mu_Y)$ 

#### Conclusion

• **Modeling** the emotion cognition process with linguistic inputs remains a difficult yet important build block of understanding the emotion cognition process of human. • We have outlined ways to construct valid and effective models to make continuous emotion valence

predictions over large text corpus.

• We hope that this paper will inspire more researchers to accomplish more ambitious and quantitative results in

## References

- Tan, X., Ong, D. et al. A Multimodal LSTM for Predicting Listener Empathic Responses Over Time

https://github.com/sherinezzzzz/224NProject