
HotpotQA: 113K valid examples of question-answer pairs
• Question type: bridge entity, comparison, etc.
• Supporting fact: provided as extra supervision

Two sets of dev/test datasets:
• Full wiki: n paragraphs as context for each question
• Distractor: exactly 10 paragraphs as context for each question

We use 10% of the training dataset to test ideas and only train 
our final model on the full dataset
Evaluate models by 3 pairs of metrics:
• Answer EM/F1, Supporting fact EM/F1, Joint EM/F1

• Multi-hop question answering on HotpotQA dataset
• SOTA structures achieve close to human performance on 

the single-hop area, while the generalization into the 
multi-hop area is impeded by complex query structure and 
long, noisy context

• We explore both BERT and RNN-based structures
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Q: The director of "Big Stone Gap" is 
based in what New York city?

Q: Adriana Trigiani is based 
in what New York city?

C1: Big Stone Gap is a 2014 American 
drama romantic comedy film written 
and directed by Adriana Trigiani…

C: Adriana Trigiani is … 
based in Greenwich Village, 
New York City.C2: Adriana Trigiani is … based in 

Greenwich Village, New York City.

A: Greenwich Village, New York City

Example: Bridge entity question vs. single hop

Our focus

No evidence shows that BERT performs predominantly well in 
multi-hop QA area. We try both BERT and RNN-based methods

BERT with classifier RNN-based model

▪ Pipeline method
▪ RNN-based classifier
▪ Pre-trained BERT (small)

▪ CoVe
▪ High-level attention
▪ Extra self-attention

Our focus

• Directly using BERT?: No pretrained model allows long context input; 
high % of noise distracts BERT; training time grows with context length

• Pipeline: select “supporting” sentences and feed them into BERT; 
fine-tune the classifier’s threshold to control level of “noise” for BERT

• Apply linear layers and softmax on BERT to predict yes/ no/ answer span

Classifier:
• Instruct BERT with the downstream task
• Predict the relevance of each sentence in 

answering the question
• Use the answer to add supervised loss

• Co-train classifier and BERT: linking the models together 
and co-train the two components may improve the result

• BERT model configuration: use large BERT w/ more epochs
• Hyperparameter fine-tuning
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x ELMo: concerns 
about training time 
and memory usage

x High-level attention: 
impede back 
propagation

√ Self-attention: 
enhance the 
understanding of 
question/context

Attention

√ Fine-tune optimizer 
and regularization

Dev set results Setting
Ans Sup Joint

EM F1 EM F1 EM F1
Baseline Distractor 44.44 58.28 21.95 66.66 11.56 40.86

BERT w/ classifier Distractor 42.13 53.63 22.58 62.14 12.44 36.64

BERT w/ gold para Distractor 53.67 66.97

RNN Distractor 43.17 56.90 19.82 65.44 10.14 39.58

Baseline Full-wiki 24.68 34.36 5.28 40.98 2.54 17.73

BERT w/ classifier Full-wiki 24.11 32.39 5.55 39.91 3.35 17.31

BERT w/ gold para Full-wiki 29.13 37.43

RNN Full-wiki 22.96 31.97 4.27 36.35 2.04 16.23

• Our proposed structures outperform baseline on 10% data, but 
fails to generalize to the whole dataset

• BERT does surprisingly well on Y/N questions and RNN 
outperforms on Number and Year questions 

• BERT: The connection of multiple related sentences is not 
exactly where BERT struggles; rather, it is having to use a 
context which has noise

• RNN: Good at handling noise while performance varies on 
different question categories. Hyper-parameters are fine-tuned 
on subset, which might be suboptimal for the full training set

Human evaluation on a subset of 200 examples


