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Task: Long Document Summarization

Dataset

Approach & Methods

Conclusions

Data was split into train/val/test with a 
92/4/4 ratio. The sequence length in the 
dataset ranges from 250 tokens to 16652 
tokens, with a mean of 4153 tokens and a 
standard deviation of 2014 tokens.
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• Presented two novel models with 
architectural improvements to 
transformers that allow for more 
efficient training while maintaining (and 
even exceeding) comparable metrics to 
existing state-of-the-art methods on 
document summarization. 

• As next steps, combining the models 
might result in even better performance.
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Document summarization has been done 
through vanilla RNNs, RL agents, and 
transformers. Transformers are very 
promising but are difficult to train as there 
attention layers serve as bottleneck. We 
present architectural design modifications to 
improve both efficiency and performance.
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