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UM U How is such a mechanism implemented and trained?
--------------------------------------------- * embeddings are linearly transformed into importance scores

* we will keep only the m words with the highest importance scores
* this step is not differentiable! How can we train it via backprop?
* simple trick:
* add the importance scores to the attention scores in transformer layers, before applying the softmax
to get the attention weights
* thus, all words are forced to attend to words in memory that were assigned a high importance
* this way, the model learns to reduce the importance for less important words from the gradients in
the attention layer
* works well in practice!
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Side note:

* this approach can be taken further!

* we can apply this “learned importance-score-based sparsity” at every self-attention head in the
original transformer

* giving rise to Sparse Transformer Networks, with only linearly scaling costs!

* see paper for a more detailed proposal of this
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