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Results Analysis Conclusion

Model Dev F1 AOA Takeaways
Baseline 61.44 e Performed worse than the baseline e Solid grasp on current state-of-the-art
_ | e Scaling of BERT’s inputs unnecessary (more sophisticated attention) question answering models.
BiDAF (Character embeddings) 62.24 59.05 :
e General understanding of neural networks
BERT (threshold -1.0) 76.12 72.99 BERT . _ . implementation and evaluation.
BERT (threshold -3.0) 25 85 2303 e Null score difference threshold: substantial role in performance e Rewarding to be able to identify error
categories and improve upon them by
BERT (threshold +3.0) 72.33 68.87 Ensemble simple modeling changes.
Naive Ensemble 76.47 7377 e Ranking tie-breaker and no-answer technique improves the model
e Better performance with diverse individual models, even if those models individually Future Work
Ensemble with ranking 76.61 r3.81 perform worse. e Training our models longer to enhance
Ensemble with ranking, models selection, | 77.07 74.19 performance
and null rule Model Type 1 error Type 2 Type 3 e Synthetic self-training to generate relevant
examples for training.
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