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Sentence-Level Extractive Text Summarization
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Introduction

Extractive summarization is the identification of
the most relevant sentences in a document which
encapsulates its main points. Graph-based,
Bayesian, and machine learning have all been
applied to this difficult task. Recently, deep
earning has also found success in this domain.
Here, we investigate a recent end-to-end deep Fig. 1 Cartoon of

earning framework called NeuSum. sentence-level extractive
summarization
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Fig. 2 NeuSum network architecture
(figure comes from [1])

The model consists of two parts:

1. Sentence encoder: two BiGRUs that encode sentences on
sentence level and then document level.

2. Joint sentence scoring and selection: scores encoded sentences
and selects one at each time step. The sentence scores
dynamically changes with selection.

Objective function requires evaluation of two distributions at each
time step t:
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Loss is the KL-divergence between P, and Q,, summed over t.
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Data

The Cornell Newsroom dataset is a corpus of 1.3 million documents
from 38 different news outlets with abstractive summaries to pair. We
siphon off a subsample of 100,000 documents for this project (Fig. 3).
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To design an extractive baseline, we test a few algorithms which runs
significantly faster than a brute-force combinatorial search (Fig. 4).
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Multi length summaries appear to better optimize Rouge-1 F1 score
with the abstractive baseline (Fig. 5).
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Results and Discussion

Table 1: Rouge-1 F1 scores (%) of LEAD-n baselines and n-summary models (n = 2 or 3)
Test Dataset LEAD-2 LEAD-3 2-summary Model 3-summary Model

2-Sent Extraction 497 — 38.7 304
3-Sent Extraction — 53.7 40.6 41.7

We trained the fixed-length NeuSum (n-summary) model on n-

sentence extraction data

In adaptive-length NeuSum,
we allow the model to
choose padding sentences.
The model learns to pad
once the summary reaches

For Rouge-1 F1 score (Table 1), NeuSum does not beat LEAD-3.
Distribution of predicted sentence indices (Fig. 6) with a long
tail matches training data well, which is also observed in the
original paper.
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Fig. 7 Ratio of 3rd sentence being <pad>

does not count into Rouge.  \when trained on 2-sentence summaries

We trained NeuSum on 2-sentence data while forcing 3-
sentence predictions. The ratio of the 3rd sentence being
<pad> increases over the time of training (Fig. 7).
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Future Work

Fully vectorize loss evaluation and train on larger datasets
Investigate into adaptive NeuSum model
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