
The Death of Feature Engineering ?
— BERT with Linguistic Features on SQuAD 2.0

Yue Zhang (yzhang16), Jiawei Li (jiaweili)

Background

• Machine reading comprehension is an essential NLP task,
it is useful both for application and as a measure of how
good NLP models understand given text.

• Input: A pair of context and query
• Prediction: The corresponding answer to query.

Dataset

• Dataset: Stanford Question Answering Dataset
2.0 [4], extending SQuAD 1.0 by adding questions that
have no answer in the given text.

• train set (129,941 exampales): All taken from the
official SQuAD 2.0 training set.

• dev set (6078 examples): Roughly half of the official
dev set, randomly selected.

• test set (5921 examples): The remaining examples from
the official dev set, plus hand-labeled examples.

Motivation

• State-of-the-art model (BERT) performs well, close to
human level, but still have some NLU errors.

• We propose incorporating linguistic features to help.

Model Architecture

• Input: a pair of sentences: context c and question q

• Output: answer for the question (a span on the context
sentences): start and end token index xstart, xend

• Metrics: Exact Match (EM) score and F1 score
• Model: BERT [3, 1] and Linguistic Feature model

BERT Model
• Input features from tokenizer

(input_idx, mask, segment) = tokenizer(c,q)
• Sequential Embedding Features from BERT

seq_out = BERT(input_idx, mask, segment)

Linguistic Feature Model
• Linguistic features from Linguistic model

ling_out = linguistic_model(c,q)

Output Layer
• Concatenate the output from both model

output_logits = output_layer(seq_out,
ling_out)

Linguistic Features
4 linguistic features are extracted for each token with NLP
package SpaCy [2], the first 3 features encoded as integers.
• NER: Name entity label
• POS: The part-of-speech tag
• DEP: Syntactic dependency, token relationship.
• STOP: Is the token part of a stop list, 0/1 vector.

Performances

Table 1: Experiments Results for Single Model

Model Name Dev Set Test Set
Single Model EM/F1 EM/F1

BiDAF 49.07/50.29 -/-
BERT (base) 71.59/74.72 -/-

Our model (base) 73.76/76.86 -/-
BERT (large) 78.51/81.34 -/-

Our model (large) 78.17/81.20 76.55/79.97

• Improvement: Our model improved EM score and F1
score by 2.17 and 2.14 compared with BERT in (both use
bert base model)

• Best Results Our single best model reaches EM score
76.55 and F1 score 79.97

Results analysis

Table 2: Model Predictions

Context Part: Yuan dynasty

Question
What non-Chinese
empire did the Yuan
dynasty succeed?

Which tribes did
Genghis Khan
fight against?

Reference Mongol Empire No Answer
BERT-feature Mongol Empire Mongol and Turkic

BERT No Answer Mongol and Turkic

• With the addition of extracted linguistic features, we find
that the new model understands context with more
complex linguistic structures better and is able to find
the correct answer when BERT itself predicts "No
Answer" wrongly.

• Our model still fails to make the correct prediction when
the reference result is ’No answer’

• The major bottleneck of the current model comes from
how we determine whether the answer exists for a certain
question

Confusion Matrix

Table 3: Confusion Matrix for the Existence of the
Answer

Confusion
Matrix Answer No Answer

Answer 1456 1454
No Answer 1556 1612

• Very high false positive and false negative are
observed here.

• our current model is unable to effectively make determine
the existence of the answer, even though we have
reached a fair high metric on EM/F1.

Conclusion and Future Work

• Adding features help increase performance of BERT
base, no significant improvement for BERT large.

• We conclude "Feature engineering is not dying",
especially when computational resources are not very
cheap today.

• In future, we are interested in modifying the architecture
and the loss function to get better results on the Answer
/ No Answer classification problem, multitasking learning
is also a good candidate for making improvement on that.

References

[1] https://github.com/huggingface/
pytorch-pretrained-BERT.

[2] https://spacy.io/usage/linguistic-features.
[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.

Bert: Pre-training of deep bidirectional transformers for
language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[4] P. Rajpurkar, R. Jia, and P. Liang.
Know what you don’t know: Unanswerable questions for
squad.
arXiv preprint arXiv:1806.03822, 2018.

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://spacy.io/usage/linguistic-features

