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Dimension: 128 -> 256 By increasing the latent space dimension to 256 (up from 128), unmodified model. >300 overfits the model.
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proficiency of NLP’s ability for more complex tasks. GloVe pretrained weight initialization overfits the data and does not
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Conv + GELU improved style transfer accuracy and reduced perplexity

Motivation: incorporating pre-trained data can improve the learning of semantics
* better disentangle style and semantics at the decoding phase

Problem
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We define two data domains for this project x, and X, for source and target data respectively. During training,
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Future Work

Exploring the combination of rule-based and statistical approaches
Figure 2: Comparison of perplexity of three models during ARAE training

7 7 Handle <unk> with a spell checker or character-based embedding
T ] | Our model in its current state does not learn explicitly a latent representation
of language style
Explicitly extract a style embedding of the sentence (our model instead uses
a style decoder)
T O S N I I o - ' | The interpretability of the latent representation is poor.
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(a) Accuracy of large latent space  (b) Accuracy of CNN + GELU model (¢) Accuracy of baseline model i 7 Multitask learning for disentangling semantic content.
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Since the data is unparallelized, there is no semantic similarity or correspondence between any given pair of

(mgl). :r:‘gJ ) ). We want to train a model to learn from these unparallelized data such as an unseen sample x € x s can be
transformed into & € x¢ such as the semantic content of the sentence is persevered while having the target style.
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Dataset

Grammarly Yahoo Answer Formality Corpus (GYAFC)
e Largest Dataset for Stylistic Transfer
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