

BERT Is All You Need

Sam Schwager (sams95) and John Solitario (johnny18)

Introduction

- **Goal:** Use HuggingFace Pytorch BERT implementation for SQuAD 2.0 to create a high-performing model and to develop foundation for carrying out a variety of experiments, leading to more broadly applicable results.
- Results: F1 score of 76.545 and an EM score of 73.609. Impressive results from modifying the loss function, training with dropout, and ensembling across models.

Baseline

• Bidirectional Attention Flow (BiDAF) without character level embedding layer.

BERT and the Power of Attention

• BERT Base: Multi-layer bidirectional Transformer encoder. The Transformer consists of 12 transformer blocks and each block has 12 attention heads. Trained with a hidden size of 768 and a max sequence length of 512. In all, the model has approx. 110 million parameters.

*J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. **A. Vaswaril, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need.

Modifying the Output Layer

• **Bespoke output layer** replaces the shallow output layer with a single hidden layer with ReLU activation.

 $\mathbf{x}_{output} = ReLU(\mathbf{W}_1\mathbf{T} + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2$

Adjusting the Loss Function

- Start vs. End: Weight the start loss twice as much as the end loss for all types of questions.
- Answer vs. No Answer: Weight loss for questions with answers twice as much as questions without answers. Weight loss for questions without answers twice as much as questions with answers.

Experiments and Results

Model Description	Dropout	Learning Rate	Epochs Trained	No Answer F1 / EM	Has Answer F1	Has Answer EM	F1	EM
BiDAF Baseline	Х	0.5	30	-	-	-	59.81	56.7
BERT Small		0.0005	3	53.09	81.96	74.57	66.91	63.38
BERT Small		0.0005	2	53.88	82.89	75.74	67.77	64.35
BERT Small	x	0.0003	3	61.90	81.35	74.74	71.21	68.05
BERT Small	Last	0.0003	3	62.22	82.07	75.33	71.72	68.49
BERT Small	X	0.0003	2	71.31	80.26	73.78	75.59	72.49
BERT Small		0.0003	3	73.58	77.73	71.34	75.57	72.51
BERT Small		0.0003	2	72.63	79.84	73.44	76.09	73.02
BERT - Bespoke Output Layer	x	0.0003	2	66.95	77.34	71.55	71.93	69.15
BERT - Adjusted Loss Function: start loss weighted twice end loss	x	0.0003	2	71.24	78.79	71.65	74.86	71.44
BERT - Adjusted Loss Function: loss weighted twice when no answer		0.0003	2	59.50	81.30	74.12	69.94	66.5
BERT - Adjusted Loss Function: loss weighted twice when has answer		0.0003	2	72.66	80.67	74.47	76.5	73.53

Intelligent Ensembling

- Ensembling Method: Choose answer with the highest probability. However, predict no answer if any of the models in the ensemble predict no answer.
- **Chosen Models:** (1) dropout, (2) weighting questions with answers more heavily than those without, and (3) weighting the answer span start more heavily than the end.

Conclusion

- Achieved competitive scores by leveraging dropout, manipulating the loss function, and ensembling.
- Future Work: Apply the most effective strategies to training the large version of BERT. Experiment with additional output layers.