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Speech recognition and automatic
music transcription (AMT) share the
very similar nature of translating certain
audio signals to specific types of
symbolic encoding. Speech recognition
translates human spoken languages to
word or phonetic transcriptions, while
AMT transcribes music to symbolic
music representations such as MIDI
(Musical Instrument Digital Interface).
Inspired by the similarities between
AMT and speech recognition, we
developed an neural network
architecture that could be trained to
tackle both problems.

We used two different datasets for AMT and speech recognition.

[1] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, 
Cheng-Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse 
Engel, and Douglas Eck. Enabling factorized piano music modeling 
and generation with the maestro dataset, 2018.
[2] John S Garofolo. Timit acoustic phonetic continuous speech 
corpus. Linguistic Data Consortium, 1993,1993.
[3] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian 
Simon, Colin Raffel, Jesse Engel, Sageev Oore, and Douglas Eck. 
Onsets and frames: Dual-objective piano transcription. 
arXiv:1710.11153, 2017.

References

speech recognition
• TIMIT[2] dataset

• 6300 sentences
• 630 speakers 
• time-aligned orthographic, 

phonetic, word transcriptions

AMT
• MAESTRO[1] dataset 

• 1184 performances
• ~430 compositions
• 172.3 audio hours,
• MIDI transcription
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Our architecture is based on the Onsets and Frames [3] architecture. We 
implemented the following elements, and tested them individually and combined for 
the best outcome.
• Baseline network

• Frame stack only, without onset stack, offset stack and velocity stack
• Dilated convolutional stacks

• Robustness against scaling (especially in time domain), common in audio
• Highway network

• Robustness against the depth of network
• Self Attention

• Self attention of all notes among different frames
• L2 loss for onset &offset time prediction

Model note Note-w-o Note-w-v Note-w-ov frame

baseline 0.698 0.523 0.683 0.514 0.514

OaF 0.898 0.708 0.872 0.693 0.870

OaF+H 0.917 0.736 0.893 0.721 0.886

OaF+D 0.904 0.714 0.879 0.699 0.865

OaF+H+D 0.915 0.736 0.891 0.722 0.884

OaF+A 0.911 0.732 0.878 0.714 0.881

Prediction

Label

For speech recognition, we used the phoneme error rate
(PER) as the metric, but we were only achieve PER of ~0.9,
which is much higher than other task-specific architectures

Analysis

In this project, we developed a neural network architecture 
that was able to outperform the state-of-art architecture for 
AMT task. We investigated multiple variations of the 
architecture and compared their performances. 
We were able to train models using the same architecture 
for the task of speech recognition, but the result were not 
ideal compared to the task specific models.

Conclusion
• Highway network and dilation conv layers improve the model; Highway network 

helps with deep network and dilation helps with data scaling.
• Self attention improves the model because it captures the relationship of 

information among different frames..
• L2 loss performs poorly, because most notes are off (0 for both onset and offset 

times) in most of the frames, which dominates the real onset and offset times.
• Speech recognition performs poorly, because 1) phonemes do not have distinct 

onset spikes, the amplitude remains relatively uniform; 2) phonetic frequency 
contents change significantly along with time, unlike those of music notes; 3) 
there is no post processing to remove the duplicated phonemes like CTC.


