
Neural Code Summarization: Experiments in Bash and Python
Benjamin N. Peloquin

Introduction

Find .java files in the current directory tree that
contain the pattern “TODO” and print their names

Display the 5 largest files in the current directory and
its subdirectories.

Gets or sets a boolean value that describes if
the extension is enabled

Returns dummy pupil size

Dataset from Lin et al. (2018)
* 9,305 Bash script / English description pairs
* 102 unique Bash utilities (find, grep, etc)
* 206 option flags Models

Data complexity and scaling

Bash is a Unix Shell and command language used as the
default login shell for most Linux distributions as well as
Apple's macOS. Shell commands typically consist of three
components -- a utility (e.g. find, grep), optional flags (e.g. -
name, -i), and arguments (e.g. "*.java", "TODO").

Example source / target pairs

Python is a high-level general purpose programming
language which is distinctive for its readability and use of
white-space.
Data is a recently released corpus of python function/
docstring pairs.
* 1.2 million docstring/function pairs
* 310,092 pairs after pre-processing
Example source / target pairs

* Token-level LSTM encoder/decoder models
* Tuning on validation set alpha=1e-04, dropout=0.5
* Learned token/character embeddings from scratch

* Character-level LSTM encoder/decoder models
* Tuning on validation set alpha=1e-04, dropout=0.5
* Learned token/character embeddings from scratch

* Token-level Transformer model
* layers=6, heads=8
* Default query, key, value projection dims as in Vaswani

et al. 2017
* Learned token/character embeddings from scratch

Python dataset displays linear growth in vocabulary size
unlike natural language datasets — this makes the problem
particularly difficult.

Code summarization (CS), the task of generating natural
language descriptions of code, has clear applications in
domains such as code search, automated documentation,
and programming pedagogy. Previous work has focused on
the reverse task (program synthesis) and few projects have
explored end-to-end neural approaches to CS. We cast the
problem in terms of neural machine translation. We gain
traction on a Bash dataset and explore problems on a more
difficult Python dataset. We find character-level modeling
appears particularly important in this domain.

transformer-token: Delete all <unk> files under current directory
lstm-token: Remove all <unk> files from the current directory tree
lstm-character: Find all *.pyc files under current directory tree
gold: Recursively removes all files like '*.pyc ' in a current folder

transformer-token: returns the url for the given url
lstm-token: return a list of the data
lstm-character: returns the default transcript
gold: download default transcript from a video platform

