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Vanilla RNNs tend to face the problem of vanishing or
exploding gradients: iterative applications of the weight
matrix and the activation function cause the gradient to
expand or shrink exponentially in the number of time
steps:
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Bounds
Main Theorem. If ! is a (ℎ×ℎ) diagonalizable matrix whose
largest and smallest eigenvalues are $ and $ respectively, and
suppose that %& is bounded between [(, *], then

$( ,-. /0 ≤ 2ℎ,
2ℎ.

≤ $* ,-.‖/0‖
where /0 is the identity matrix.

$( < 1 $( = 1 $( > 1

$* < 1 Vanishes - -

$* = 1 May vanish Constant -

$* > 1 May vanish 
or explode May explode Explodes

The choice of 
(, *, $, $
determines the 
behavior of 
gradients across 
timesteps.

Approach

Ideally, we may select % 8 = 8 and ! to be an orthogonal
matrix, then the gradients are forced to have constant norm.
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Toy Experiments

! ← exp(−())!
) = ∇9- !: − ! ∇9- :

! is kept orthogonal via a 
modified update rule (on the 
right) based on [3] and [4].

Language Modelling
The idea of constraining eigenvalues
suggests thinking about W as a rotation in
space. [2] terms this a unitary RNN (uRNN)
as the weight W is unitary (or in the case
with real entries, orthogonal).

The task of language modelling involves
predicting the next word given a sequence
of previous words.

• Conducted on Penn Treebank Dataset.
• Successfully bounded gradient norms.
• Example sentences suggest "long-

term" memory.
• 2ms / 1 – 10% slower per batch despite

“costly” matrix exponential operation

Acc. (%) \
Input length 20 50 100

RNN 10.22 10.56 0.936

uRNN 99.98 100.00 100.00

"this talk would the most important guidelines by now for our benefit capital which makes about
N N of the key machines related a rate for customer democrats morning while the number of
shared ones also with best united states now be counted following midnight night."

Acc. (%) \
Input length 100 200 400

RNN 38.12 34.15 15.23

uRNN 92.01 80.45 56.73

Task 1 – First term recall

5, 7, 9, 53, 99, ...
(Ans: 5)

Task 2 – k-th highest term

5, 7, 9, 53, 99, 98, 2, 100, ...
(Ans: 98)

The uRNN outperforms the vanilla RNN on both toy
experiments, especially on longer sequence lengths. With more
timesteps, the gradients on the RNN should start to vanish,
making it harder to train.
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Ppl \ Activation ReLU |x| Leaky ReLU

RNN 754.65 / 
705.28

784.53 / 
773.91

756.48 / 
712.88

uRNN 720.88 / 
666.93

717.12 
/ 613.89

869.21 / 
810.21

Ppl \ BPTT 35 150

GRU 100.80 / 97.25 108.33 / 
105.34

uGRU 101.76/ 98.05
105.05 / 
102.07

Discussion
Advantages
• Great at contextual tasks which require "long-

term" memory
• Concrete bound on gradients
• Potentially better at training networks before

the recurrent layer
Disadvantages
• Negligibly slower (especially for larger batch

sizes)

Typically ≤ 1Sensitive to eigenvalues [1]
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Complex Architecture

Possible architecture for future work
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