URNN: An Approach to Bounded Gradients

David Kewei Lin Jensen Jinhui Wang

linkewei@stanford.edu wangjh97@stanford.edu CS 224N (Win 2019) Final Project
Mentor: Michael Hahn

Problem Approach Language Modelling

h h(2) h®3) h“) The idea of constraining eigenvalues The task of language modelling involves
suggests thinking about W as a rotation in predicting the next word given a sequence
goW goW goW space. [2] terms this a unitary RNN (uRNN) of previous words.
as the weight W is unitary (or in the case - ¥ . 7]
with real entries, orthogonal). e Conducted on Penn Treebank Dataset. Ef _________________________________________
e Successfully bounded gradient norms.
W is kept orthogonal via a W — exp(—a)W . Exam”ple sentences  suggest "long-
modified update rule (on the term” memory. o
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Vanilla RNNs tend to face the problem of vanishing or “costly” matrix exponential operation
exploding gradients: iterative applications of the weight Overall architecture:
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matrix and the activation function cause the gradlent to N N of the key machines related a rate for customer democrats morning while the number of
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expand or shrink exponentially in the number of time = 23 shared ones also with best united states now be counted following midnight night."
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Sensitive to eigenvalues [1] Typically < 1

Bounds Toy Experiments

Main Theorem. If W is a (hXh) diagonalizable matrix whose

_ = _ Task 1 — First term recall ot ,‘Z‘,’,’g}h 20 50 100 Advantages
largest and smallest eigenvalues are A and A respectively, and AN 1002 | 1056 | os3e * Great at contextual tasks which require "long-
suppose that o’ is bounded between [, ], then ' ' ' term" memory
(28) Il <| el < ) il 5,7,9,53,99, ..  Concrete bound on gradients
dhy, (Ans: 5) e Potentially better at training networks before
where [y, is the identity matrix. Task 2 — k-th highest term e 100 200 400 the recurrent layer / [ l ] ’
RNN 3812 | 3415 | 15.23 Disadvantages
B <1 B=1 The choice of NN | o201 | so4s | 5693 * Negligibly slower (especially for larger batch Complex Architecture
— BV, /—L& >5,7,9,53,99,98, 2, 10((?0\’ns.-.9.8) sizes) Possible architecture for future work
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