
Problem
Most task-oriented chatbots are implemented as
hand-coded Finite State Machines (FSM), where
user utterances matching pre-defined patterns
transition the dialogue from one state to the next:

Data
Our primary dataset was obtained in partnership

with Yalochat, Inc. and represented 30 days of

real-world chatbot dialogue from the logs of the

Aeroméxico Facebook / WhatsApp chatbot.

Approach
We modeled task-oriented dialogue as a Markov
Decision Process (MDP) with infinite state space,

allowing for the application of Reinforcement

Learning (RL) techniques.

At each time-step, the bot chooses one of a finite

set of pre-programmed actions to take based on

the current state, which can be thought of as the

entire dialogue up to that point. These actions

might involve performing a computation, or

interacting with a database, for example. After the

bot performs an action, the dialogue will then

transition non-deterministically to the next state,

based on the probability distribution over possible

user responses.

We chose an LSTM-based architecture with

softmax output, initially taking as input the two

most recent utterances and later augmenting the

input with the previous bot action:

Deep Reinforcement Learning for Task-Oriented Dialogue
Nnamdi Iregbulem (nnamdi@stanford.edu) & Sahil Yakhmi (syakhmi@stanford.edu)

Task
Prior research has attempted to combine
reinforcement learning with traditional neural
network-based natural language generation to
varying degrees of success.

We demonstrate the viability of end-to-end
Deep Reinforcement Learning for automatic
and continuous learning for a chatbot agent.

We build a machine-learned action policy model to
approximate the behavior of a deployed chatbot,

leverage heuristics and conversational cues to

extract rewards from unannotated conversation

logs, and finally use Reinforcement Learning to

improve performance over our baseline.

Results
Baseline: Yalochat
Trained on the original Yalo state transition labels,

our model achieved good fit to the data:

Baseline + Improved State
Representation: Yalochat
Building on the previous baseline, we made

improvements to the model architecture and state

representation. This became our primary baseline

for later reinforcement learning experiments.

Analysis
In analyzing our RL system's performance, there

was one question of primary interest---did our

model learn the behaviors we were trying to

reinforce?

Qualitatively, analyzing the model's performance

on examples from the dev set shows that

although reinforcement did not solve always solve

the problem, RL did boost the probability of the
desired action on unseen data. One example is

presented below (correct action:

(FS-Arrival}---flight search):

References
Jiwei Li, Will Monroe, Alan Ritter, Michel

Galley, Jianfeng Gao, and Dan Jurafsky.

Deep reinforcement learning for dialogue

generation. 2016.

Pararth Shah, Dilek Hakkani-Tur, and Larry

Heck. Interactive reinforcement learning for

task-oriented dialogue management. 2016.

Satinder Singh, Michael Kearns, Diane

Litman, and Marilyn Walker. Reinforcement

learning for spoken dialogue systems. 1999.

[1]

Conclusion
In our experiments, we demonstrate the viability of

approximating the behavior (action policy) of a

hand-tuned, chatbot FSM with a deep neural

architecture. These experiments represent a step

in the direction of a self-optimizing chat agent,
whose conversation flows do not have to be fully

designed by a UX team and show the viability of

end-to-end learning of an action policy on raw
text inputs (without the use of an intermediate

NLU knowledge representation), as well as the

viability of reinforcement learning as a scalable

learning technique within this context.

The open-source framework Rasa (rasa.com) has
popularized a new architecture with flexible and
learnable dialogue states and transitions.

However, this new architecture has a training data
problem. Rasa requires training data for both NLU
(intent recognition and parsing) and dialogue state
management, but hand-annotating examples is a
time-consuming, expensive process. Moreover,
there is no simple way to leverage conversation
data from chatbots deployed in the field.

After cleaning, we were left with 14,647
conversations and 284,027 utterances. Each

user utterance was labeled with the state transition

the production Aerobot performed after processing

the input. After further cleaning of the labels, we

were left with 98 labels.

Reinforcement Learning: Yalochat
Our model achieved high accuracy with respect to

modeling Aerobot’s behavior, but lower than the

enhanced baseline system:

Nevertheless, the RL process also created losses

through overgeneralization, for example,

interpreting nonsense input as a flight search.

[2]

[3]

