
Problem
Most task-oriented chatbots are implemented as 
hand-coded Finite State Machines (FSM), where 
user utterances matching pre-defined patterns 
transition the dialogue from one state to the next:

Data
Our primary dataset was obtained in partnership 

with Yalochat, Inc. and represented 30 days of 

real-world chatbot dialogue from the logs of the 

Aeroméxico Facebook / WhatsApp chatbot.

Approach
We modeled task-oriented dialogue as a Markov 
Decision Process (MDP) with infinite state space, 

allowing for the application of Reinforcement 

Learning (RL) techniques.

At each time-step, the bot chooses one of a finite 

set of pre-programmed actions to take based on 

the current state, which can be thought of as the 

entire dialogue up to that point. These actions 

might involve performing a computation, or 

interacting with a database, for example. After the 

bot performs an action, the dialogue will then 

transition non-deterministically to the next state, 

based on the probability distribution over possible 

user responses.

We chose an LSTM-based architecture with 

softmax output, initially taking as input the two 

most recent utterances and later augmenting the 

input with the previous bot action:
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Task
Prior research has attempted to combine 
reinforcement learning with traditional neural 
network-based natural language generation to 
varying degrees of success.

We demonstrate the viability of end-to-end 
Deep Reinforcement Learning for automatic 
and continuous learning for a chatbot agent. 

We build a machine-learned action policy model to 
approximate the behavior of a deployed chatbot, 

leverage heuristics and conversational cues to 

extract rewards from unannotated conversation 

logs, and finally use Reinforcement Learning to 

improve performance over our baseline.

Results
Baseline: Yalochat
Trained on the original Yalo state transition labels, 

our model achieved good fit to the data:

Baseline + Improved State 
Representation: Yalochat
Building on the previous baseline, we made 

improvements to the model architecture and state 

representation. This became our primary baseline 

for later reinforcement learning experiments.

Analysis
In analyzing our RL system's performance, there 

was one question of primary interest---did our 

model learn the behaviors we were trying to 

reinforce?

Qualitatively, analyzing the model's performance 

on examples from the dev set  shows that 

although reinforcement did not solve always solve 

the problem, RL did boost the probability of the 
desired action on unseen data. One example is 

presented below (correct action: 

(FS-Arrival}---flight search):
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Conclusion
In our experiments, we demonstrate the viability of 

approximating the behavior (action policy) of a 

hand-tuned, chatbot FSM with a deep neural 

architecture. These experiments represent a step 

in the direction of a self-optimizing chat agent, 
whose conversation flows do not have to be fully 

designed by a UX team and show the viability of 

end-to-end learning of an action policy on raw 
text inputs (without the use of an intermediate 

NLU knowledge representation), as well as the 

viability of reinforcement learning as a scalable 

learning technique within this context.

The open-source framework Rasa (rasa.com) has 
popularized a new architecture with flexible and 
learnable dialogue states and transitions.

However, this new architecture has a training data 
problem. Rasa requires training data for both NLU 
(intent recognition and parsing) and dialogue state 
management, but hand-annotating examples is a 
time-consuming, expensive process. Moreover, 
there is no simple way to leverage conversation 
data from chatbots deployed in the field.

After cleaning, we were left with 14,647 
conversations and 284,027 utterances. Each 

user utterance was labeled with the state transition 

the production Aerobot performed after processing 

the input. After further cleaning of the labels, we 

were left with 98 labels.

Reinforcement Learning: Yalochat
Our model achieved high accuracy with respect to 

modeling Aerobot’s behavior, but lower than the 

enhanced baseline system:

Nevertheless, the RL process also created losses 

through overgeneralization, for example, 

interpreting nonsense input as a flight search.
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