Simple Mathematical Word Problems Solving with Deep Learning

Sizhu Cheng \{scheng72\} ,Nicolas Chung \{sunchung\}

Problem

Intelligence cannot be deprived of mathematical reasoning. People use their knowledge to solve extensive mathematical problem every day in real life. Mathematical problems are often stated in words in different scenarios, thus requiring problem solvers to extract information from the text and formulate in mathematical language to get the problem's answer. MWPs solving is believed to be challenging because of the semantic gap between the mathematical expressions and language logics [1]. We delved into simple algebra math problems and try to formulate mathematical equations that can solve the corresponding problem. We experimented with different deep learning model including bidirectional GRU seq2seq models and its variants, as well as Transformer.

Dataset		
data set name	number of math problems	source
MaWPS	3914	MaWPS Repo
Dolphin 18K	18460	Yahoo
AQUA-RAT	100000	[1]
Data size in total: 45446		
${ }^{1}$ MaWPS: fro	University of Washington	

MaWPS: from University of
estion answering site - Yahoo ${ }^{3}$ AQUA-RAT: Multiple Choices Question from [1]

Preprocessing:

-Use open source codes utilizing python libarary urlib to scrape down data from answers. yahoo.com (2Regular expressions are used to extract all equations from 'rationale' of each piece of data in AQUA-RAT

Approach

Baseline:BiGLAtt

\Leftrightarrow Bidirectional GRU encoder, Unidirectional LSTM decoder, Multiplicative attention (BiGLAtt)
\Rightarrow embedding size: 32 , Hidden size: 256
\Rightarrow Dropout : 0.5

Baseline model Architecture

Approach
Baseline:BiLLAtt
\Leftrightarrow Bidirectional LSTM encoder,Unidirectional LSTM decoder, Multiplicative attention (BiLLAtt)
\Rightarrow embedding size: 32 , Hidden size: 256
\Rightarrow Dropout : 0.5
Transformer
\rightarrow Tensor2Tensor single gpu version
\rightarrow Embedding trained
\Rightarrow Batch size: 2046, maximum length of the source 256
\Rightarrow learning rate: 2.0
Encoder
$\mathrm{X}=41+1 / 32$

(embed)
MWPs
Transformer model Architecture

Quantitative Results

Models	Accuracy	Negative Log BLEU PerPlexity	
BiGLAtt	0.11	-1.0058479	28.14
BiLLAtt	0.16	-1.1486490	28.95
Transformer 0.6737	-1.7671001	$\mathrm{~N} / \mathrm{A}$	

Analysis

Q:Jason had Pokemon cards. He gave 9 to his friends. He now has 4 Pokemon cards. How many Pokemon cards did he have to start with?
Correct: X-9 = 4
BiGLAtt Output: - $9=4-\mathrm{X}=18$
BiLLAtt Output: $x-9=4$
Transformer Output: x-9=4
Q: At Lindsey 's Vacation Wear , 0.375 the garments are bikinis and 0.25 are trunks. What fraction of the garments are either bikinis or trunks?

Models

BiGLAtt and BiLLAtt

Analysis continued

Correct: $\mathrm{X}=0.375+0.25$
BiGLAtt Output: $X=0.25+0.25$
BiLLAtt Output: $X=0.75-0.5$
Transformer Output: $\mathrm{X}=0.375+0.25$
It seems like transformer can perform much better than the baseline when numerals appear are the decimals. Surprisingly, the results even works in the case:
Q: What is the fourth root of 400 over root 10 ?
Correct: x = 400 ^ $(0.25) / \operatorname{sqrt}(10)$
Transformer Output: $\mathrm{t}=400^{\wedge}(1 / 4) / 10^{\wedge}(1 / 2)$
though the performance may be bad if solely evaluated using accuracy.
However, for problems with 'word numbers' and 'numerals' together: $Q: I f$ one third of $3 / 4$ of a number is 21 . Find the number?
Correct: $1 / 3 * 3 / 4 * x=21$
Transformer Output: $x=72$
Equations are hard to be established and result is bad.

Transformer

Loss for both train and eval for transformers
\qquad

Negative log perplexity for validation set during training
Early Stopping at 15,000 steps.

Conclusions

\Rightarrow Transformer improved performance a lot, though test accuracy is still not super satisfying
\Leftrightarrow Data is not perfectly correct because some targets are just 'equations' found in 'Rationale'. They may not be the actual equations to solve the problem, but just the brainstorming to the final answer
\Rightarrow Gap remained to fully capture the mathematical logics

References

[1] Wang Ling et al. "Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems". In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 158-167. DOI: 10.18653/v1/P17-1015. URL: http : / / aclweb . org / anthology / P171015

