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e Large datasets are often labeled by paid
crowdworkers, which is a lengthy and
expensive process

e Pressing need for accurate automated
evaluation of crowdsourced annotations

e Goal: Perform a binary classification of
confusion in crowdsourced data labels and
identify the correct answer from unstructured
response text.

o Visual Question Response (VQR) Task:
Identify confusion given an image, a
question referring to the image, and a
crowdworker response

o Question Response (QR) Task: Identify
confusion based on question and response
text with no image features.

e 50,628 image-question-response trios,
obtained from users on Instagram

o Questions asked by a bot that analyzes
image features

o Dataset includes ground truth answers

e Generated binary labels to represent
confusion, assigning 0 if the user response
contains the true answer and 1 otherwise

e |dentified spans (index range) in response
containing the ground truth answer

Dataset: The
dataset includes
images, questions,
responses, ground
truth answers,
labels, and answer
spans.

Question: [“what”, “color”, “is”, “the”, “ball”]

Response: [“it”, “looks”, “kind”, “of”, “red”]

Ground Truth Answer: [“red”]

Label: 0

Answer Span: (4, 4) Image: g L G
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Visual Question Response (VQR) Model

Pythia is a network created by Facebook Al for the visual question answering task.
o Standard architecture is not designed for binary classification or answer span detection. The
model also works only with formatted text input, not natural language
o Thus, significant customization was necessary
A pretrained Faster R-CNN model is utilized to compute bottom-up attention over
Images. Features are then weighted with respect to the question and user response
Question, response, and image embeddings are combined with a weighted
Hadamard product, creating a joint embedding representing the entire input
Binary classification: Joint embedding is passed through linear layers and sigmoid
nonlinearities to generate a probability of confusion, ranging between 0 and 1.
Answer prediction: Joint embedding is passed through two linear layers and softmax
functions to identify the start and end index of the answer span within the response.
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VQR Model Architecture for Binary Classification
Question Response (QR) Model
Google Al’s pretrained BERT base uncased model serves as an effective starting
point for the QR task
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o Prediction loss set to 0 when the model identifies

confusion. since no associated span exists QR Model Architecture for Binary Classification
)

Results and Analysis

Binary Classification Task
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Baseline: Bag of Words

Baseline: GLoVe Embeddings
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Answer Prediction Task
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Multi-Task Model

Test Set Results AUC-ROC F1score

QR Multi-Task

QR model achieves higher performance
than VQR model on both tasks

Multi-task QR outperforms single-task QR

Conclusion

VQR and QR models can effectively identify
crowdworker confusion and extract answers.

Multi-task QR model can perform both tasks

High performance of QR model suggests that
analysis of images may not be necessary in
resource-constrained settings

Custom tokenization methods enable
effective handling of unstructured input
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