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Problem
● Argument mining, a growing field in natural 

language generation, includes the automatic 
identification and generation of argumentative 
structures within conversation 

● We experiment with various methods for 
 creating a dialogue agent that can engage in 
      argumentative discourse

Significance
● Utility in education and assessment as well as 

business use for investment decision
● Advances self-attention/transformer in 

argument NLG/NLU objectives
Existing Approaches

● Current state-of-the-art generative model: 
hierarchical recurrent neural network, 
encoding and decoding at one level and  
updating a conversation-level state at another
○ Encoder: Bidirectional GRU encoder w/ 

conversation-level RNN memory
○ Decoder: Vanilla RNN

● Model often misinterprets arguments or  
produces irrelevant responses. 

Overview Approach
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Results

Future Work

● Internet Argument Corpus Dataset-v1: 
11,800 discussions w/ ~390,000 posts total

● Training instance: discussion, d (sequence of 
posts)

● Gold instances are offset from train instances
● p is a padded sequence of tokens, w

Data

Figure 1. Transformer Model Architecture w/ LSTM. We borrow the 
Transformer architecture and use an LSTM between the encoder/decoder 
to encode session level memory.

● Less primitive argumentation datasets increases 
language model expressivity

● Fine-tuning on pretrained contextual embeddings 
(BERT) captures word relationships more precisely for 
better NLG

● More sophisticated attention mechanisms may allow 
for a more informative signal for decoding

Additional Tunings
1. Hyperparameter search - layers, dimensions, attention 

heads, learning rate, vocabulary size, min word count, etc.
2. Pre-training with cross-argumentative embedding 

objective (Self-referential)
3. GloVe embeddings vs. training from scratch
4. <unk> thresholding, vocabulary pruning, etc. (16k size)

Project Phases
1. LSTM Seq2Seq - model baseline, context-free 

argument generation
2. Pure transformers - context-free argument generation
3. Transformer with LSTM Session Memory - 

context-rich argument generation

Figure 4. Training and validation metrics of pre-trained and 
from-scratch Transformer w/ LSTM models and Seq2Seq over 26 
epochs.

● From our qualitative results, we conclude that our dataset is ill-suited for generating more sophisticated 
language models  typical of advanced argumentative discourse 

● Our extensive hyperparameter search suggests that our cross entropy training objective is overly simplistic 
for more complex generation tasks. A more involved theoretical formulation of training loss could yield 
qualitative translation improvements

● We were impressed by the model’s ability to infer the underlying basis of the human input arguments
● Additionally, the dialogue agent was proficient in establishing a sufficiently resolute position on many topics

Figure 2. Transformer w, w/o LSTM sample argumentation

Task
Given a post (w, w/o context), generate an 

appropriate adversarial argumentative response

Table 1. Transformer w/ LSTM validation 
metrics with tuned parameters


