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Problem
e Argument mining, a growing field in natural

language generation, includes the automatic
identification and generation of argumentative
structures within conversation
e We experiment with various methods for
creating a dialogue agent that can engage in
argumentative discourse
Significance

e Utility in education and assessment as well as
business use for investment decision
e Advances self-attention/transformer in
argument NLG/NLU objectives
Existing Approaches

e C(Current state-of-the-art generative model:
hierarchical recurrent neural network,
encoding and decoding at one level and
updating a conversation-level state at another
o Encoder: Bidirectional GRU encoder w/

conversation-level RNN memory

o Decoder: Vanilla RNN
e Model often misinterprets arguments or

produces irrelevant responses.

d=[pV,p?,...,p™
p(z) — 'wii): 'wéi): 'u-"'fz.i)

e Internet Argument Corpus Dataset-vl:
11,800 discussions w/ ~390,000 posts total

e Training instance: discussion, d (sequence of
posts)
Gold instances are offset from train instances

e pis a padded sequence of tokens, w

Task
Given a post (w, w/o context), generate an
appropriate adversarial argumentative response

Systems with Self Attention
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Project Phases

context-rich argument generation

1. LSTM Seqg2Seqg - model baseline, context-free
argument generation

2. Pure transformers - context-free argument generation
3. Transformer with LSTM Session Memory -
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Figure 1. Transformer Model Architecture w/ LSTM. We borrow the
Transformer architecture and use an LSTM between the encoder/decoder
to encode session level memory.

Additional Tunings

1. Hyperparameter search - layers, dimensions, attention

heads, learning rate, vocabulary size, min word count, etc.

2. Pre-training with cross-argumentative embedding
objective (Self-referential)

3. GloVe embeddings vs. training from scratch

4. <unk> thresholding, vocabulary pruning, etc. (16k size)

LSTM Seg2seq (w/o char decoder)

Query Output
[ think the bible is real and it 1 ‘m not sure that you are not a christian. 1 do
should be respected n’t think 1t is a matter of the bible . 1 do n’t

think it is a matter of a person .

Woman s rights and suffrage 1do n’t know what 1 said , but 1 do n’t know

should be upheld under the law what you are talking about .

Transformer w/ LSTM
Output

Query

i believe in god

1 'm not sure what you mean by " god " .

well then, have you heard of the bible? 1 do n't think it 's a good idea .

Transformer w/o LSTM

Output
1 think that ’s a good thing .

Query

1 think that gun control has the
potential to solve a lot of the
problems with school shootings

[ think that abortion should be 1 think that ’s a good point . 1 think that if
illegal because its effectively murder you are a christian , you are a christian.

Figure 2. Transformer w, w/o LSTM sample argumentation

Table 1. Transformer w/ LSTM validation
metrics with tuned parameters

Epoch: | Perplexity Accuracy Loss
0 205.88 17.30% 5.33
4 84.21 24.83% 4.43
8 72.10 26.35% 4.28
12 65.65 27.36% 4.18
16 62.40 28.00% 4.13

Sequence to Sequence Generative Argumentative Dialogue
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Figure 4. Training and validation metrics of pre-trained and
from-scratch Transformer w/ LSTM models and Seq2Seq over 26
epochs.

Conclusion

e From our qualitative results, we conclude that our dataset is ill-suited for generating more sophisticated
language models typical of advanced argumentative discourse

e Our extensive hyperparameter scarch suggests that our cross entropy training objective is overly simplistic
for more complex generation tasks. A more involved theoretical formulation of training loss could yield

qualitative translation improvements

e We were impressed by the model’s ability to infer the underlying basis of the human 1nput arguments
e Additionally, the dialogue agent was proficient in establishing a sufficiently resolute position on many topics

Future Work

e [ess primitive argumentation datasets increases
language model expressivity

e Fine-tuning on pretrained contextual embeddings
(BERT) captures word relationships more precisely for
better NLG

e More sophisticated attention mechanisms may allow
for a more informative signal for decoding
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