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Problem Analysis
* Question answering (QA) system: _ nanswerable * Adversarial Example. |
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Classifier Answerable under Richard | of Normandy was forged into a
BERT cohesive and formidable principality in feudal tenure.
> .
Baseline The Normans are noted both for their culture, such as

their unigue Romanesque architecture and musical

humans in a natural language

QA tasks are challenging: Requires both :
understanding of natural language and
knowledge about the world

e Goal: Improve BERT [Devlin et al., 2018] for Questions traditions, and for their significant military

SQUAD v2.0 [Rajpurkar et al., 2018] containing... accomplishments and innovations. ... Jeff Dean ruled
e Task: Given a question and a paragraph from What > BBER:T > > I':"-L the duchy
e 1 . . aseline oss t e
Wikipedia, predict whether or not the question Question: Who ruled the duchy of Normandy?
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, yes: P Models for Different Who(m BERT NLL .
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for question answering task HERSWETabS Loss Combine BERT iod ermbedd: o
- BERT pre-trained embedding + one linear layer : : OomBIning pre-trained embeddings wi
Figure 1. Overview of our approaches : : e :
weighted BiDAF and classification loss improved
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