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INTRODUCTION RESULTS

The topic of this project is extending the recent proposed QANet [1] and —
apply these methods on SQUAD 2.0 [2]. In this project, we propose a
framework that combines the strength of transformer and RNN to conduct
fast machine comprehension with consideration to sequential logic in the
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We apply the proposed method on SQUAD 2.0 [2].
Based on the QANet architecture, we made following modifications:
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. . . The table shows the EM and F1
* add a RNN based contextual embedding layer in addition to the word- Context-to-query Attention (C2Q) results for all of the methods we
level and character-level embeddings. applied in this project.

« simplify the encoder blocks for both encoding and modeling layers with « Standard QANet 1 head
less stacks of ConvNet. performs best

« replace the 1D ConvNet with GRU in the encoder block. . Applying ensemble model
based on all of the methods
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