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• Our implementation of QANet achieved near SoTA accuracy on 

SQuAD 2.0 dataset

• Ablation study conducted to analyze the functionality of 

important layers

• Insights drawn form visualization of Q2C and C2Q attentions

• Accuracy study conducted over question types and length of

answer
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The topic of this project is extending the recent proposed QANet [1] and 

apply these methods on SQuAD 2.0 [2]. In this project, we propose a 

framework that combines the strength of transformer and RNN to conduct 

fast machine comprehension with consideration to sequential logic in the 

context.

RESULTS

Query-to-context Attention (Q2C)

Context-to-query Attention (C2Q) 

Model EM F1

Std QANet 8 hds 63.07 66.60

Std QANet 1 hd 63.15 66.72

QANet Light 60.56 64.30

QANet GRU 59.57 62.99

Ensemble model 64.26 67.60

We apply the proposed method on SQuAD 2.0 [2]. 

Based on the QANet architecture, we made following modifications:

• add a RNN based contextual embedding layer in addition to the word-

level and character-level embeddings. 

• simplify the encoder blocks for both encoding and modeling layers with 

less stacks of ConvNet. 

• replace the 1D ConvNet with GRU in the encoder block.

The table shows the EM and F1 

results for all of the methods we 

applied in this project.

• Standard QANet 1 head 

performs best 

• Applying ensemble model 

based on all of the methods 

achieve the highest F1 score 

and EM score. 

• For context-to-query attention and 

query-to-context attention analysis, 

we show a example where the model 

correctly predicts the answer.

• The Q2C attention shows the words 

that have highest attention regarded 

to the query reasonably represent the 

key meaning of the query.

• The C2Q shows the relevant context 

words for query word may offer some 

reference to the meaning of the query 

word.

• As the increase of answer length, the 

F1 score decrease, which means the 

models are still not good at predicting 

longer deeper logic. 

• Both methods get a high F1 score on 

‘to’, ‘how’, ‘where’ problem. The 

Standard QANet 1 head result has a 

higher F1 score.
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