Computer Science

Introduction and Problem

O/In recent years, two trends in NLP research: \

o Pre-trained contextual embeddings: ELMo, BERT, etc
o Multi-task learning: Decathlon, GLUE, etc.

How can we use both?

A naive approach would result in millions of additional
parameters per task. These need to be stored and loaded
for each inference.

Problem: Question Answering

Dataset: SQuUAD 2.0: (paragraph, question) pairs,
either the answer is a span in paragraph or there are
Nno answers.

Goals:
e Improve performance in terms of F1 and exact
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Storage Efficient Results

/ Here we aim to maintain performance while minimizin}
number of additional parameters.

# Parameters
(Overhead)

Model F1

EM

baseline (fine-tuned) 76,5 73,5 110M (+100%)
baseline (top block fine-tuned) 54.0 51.7 9.2 M (+8.3%)
baseline (frozen) 51.1 51.0 1.5K(+0.001%)
baseline (frozen) + PALs (120) 63.9 60.7 704K (+0.64%)
baseline (frozen) + Adapters (768) 709 67.4 592.9 K (+0.54%)
baseline (frozen) + Adapters (768) + 747 723 629.7 K (+0.57%)

LayerNorm

Adapters consistently outperform other approaches in QA.
We achieve comparable performance with just 0.57% additional
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Performance Results

Here we sacrifice storage efficiency for performance.
We train on SQuAD 2.0, CoQA, no-answer augmented datasets
Adapters are trained after other parameters are done training.

F1 EM
(dev)

Training time
(minutes)

(dev)

baseline (fine-tuned) 76.5 73.5 377
baseline + Answer Pointer 76.7 73.5 388
baseline + Data Augmentation 77.9 75.5 1110
baseline + Pre-training on CoQA 78.5 75.7 836
baseline + Pre-training on CoQA + Adapter 79.2 76.3 1240
baseline + Pre-.tramlng on COQA + Data 79.5 76.5 1792
Augmentation + Answer Pointer
baseline + Pre-training on CoQA + Data 80.5 77 & 2151

Augmentation + Answer Pointer + Adapter

Qarameters to store per task. J
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e Adapters’ weights in the last transformer block:
o We probably did not need adapters in
self-attention.
o But adapters in all blocks in output learned
patterns.
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Performance improvements
distribution for non-trivial questions.
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Performance improvements for longer
questions
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Test set scores: F1:81.44 (3rd) EM: 78.36
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e Using Adapters with frozen BERT is an effective way to decrease per
task parameters in a multi-task learning setting.

e Fine-tuning BERT with Adapters can increase the performance in
terms of F1 and EM scores without overfitting.

e Even simple data augmentation techniques work well compared to
architectural changes after the top layer of BERT.

e Future work: Assessing interpretability of task-specific modules
inside BERT p
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