

Stanford ENGINEERING

Computer Science

BERT-A: Fine-tuning BERT with Adapters and Data Augmentation

Introduction and Problem

- In recent years, two trends in NLP research:
 - Pre-trained contextual embeddings: ELMo, BERT, etc
 - Multi-task learning: Decathlon, GLUE, etc.

How can we use both?

A naive approach would result in millions of additional parameters per task. These need to be stored and loaded for each inference.

Problem: Question Answering

Dataset: SQuAD 2.0: (paragraph, question) pairs, either the answer is a span in paragraph or there are no answers.

Goals:

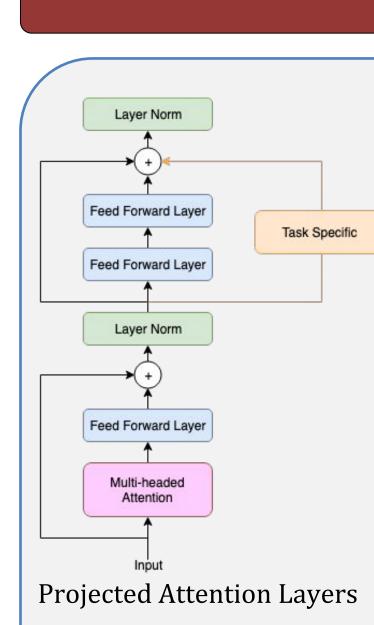
- Improve performance in terms of F1 and exact match (EM) scores
- Keep additional trainable parameters to a minimum

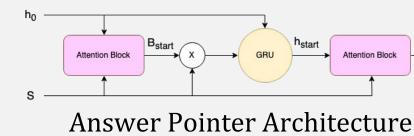
Storage Efficient Results

Here we aim to maintain performance while minimizing number of additional parameters.

Model	F1	EM	# Parameters (Overhead)
baseline (fine-tuned)	76.5	73.5	110 M (+100%)
baseline (top block fine-tuned)	54.0	51.7	9.2 M (+8.3%)
baseline (frozen)	51.1	51.0	1.5 K (+0.001%)
baseline (frozen) + PALs (120)	63.9	60.7	704 K (+0.64%)
baseline (frozen) + Adapters (768)	70.9	67.4	592.9 K (+0.54%)
baseline (frozen) + Adapters (768) + LayerNorm	74.7	72.3	629.7 K (+0.57%)

Adapters consistently outperform other approaches in QA. We achieve comparable performance with just **0.57%** additional parameters to store per task.





Adapters are trained after other parameter

Model

baseline (fine-tun

baseline + Answer P

baseline + Data Augme

baseline + Pre-training baseline + Pre-training on Co

baseline + Pre-training on Augmentation + Answe

baseline + Pre-training on Augmentation + Answer Point

CS 224n: NLP with Deep Learning Poster Presentation, Winter 2019

Sina J. Semnani sinaj@stanford.edu

Fatma Tlili ftlili@stanford.edu

Analysis Approach • We experiment with two types Adapter of task-specific modules inside each Transformer block Feed Forward Layer • Adapters patterns. Feed Forward Layer • Projection Attention Layers Layer Norm • We use an Answer Pointer Performance improvements layer as our output layer distribution for non-trivial questions. Adapter • For better performance, we Feed Forward Layer use: • data augmentation Multi-headed (increase instances of Attention "no-answer" questions) • transfer-learning from Adapters CoQA dataset 1 2 3 4 5 6 7 8 9 10

Performance Results

Here we sacrifice storage efficiency for performance.

We train on SQuAD 2.0, CoQA, no-answer augmented datasets

ed	after	other	paramet	ters are	done	training.

	F1 (dev)	EM (dev)	Training time (minutes)
ned)	76.5	73.5	377
Pointer	76.7	73.5	388
nentation	77.9	75.5	1110
g on CoQA	78.5	75.7	836
CoQA + Adapter	79.2	76.3	1240
CoQA + Data er Pointer	79.5	76.5	1722
i CoQA + Data inter + Adapter	80.5	77.5	2151

Test set scores: F1: 81.44 (3rd) EM: 78.36

• Using Adapters with frozen BERT is an effective way to decrease per task parameters in a multi-task learning setting.

- Fine-tuning BERT with Adapters can increase the performance in terms of F1 and EM scores without overfitting.
- Even simple data augmentation techniques work well compared to architectural changes after the top layer of BERT.
- **Future work:** Assessing interpretability of task-specific modules inside BERT

References

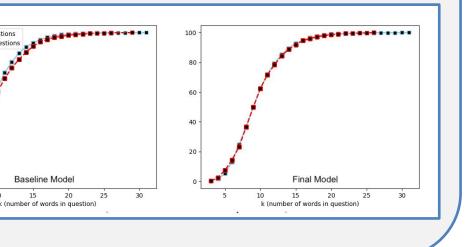
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018).
- Houlsby, Neil, et al. "Parameter-Efficient Transfer Learning for NLP." arXiv preprint arXiv:1902.00751 (2019).
- comprehension systems." *arXiv preprint arXiv:1707.07328* (2017).

Kaushik Ram Sadagopan kaushik7@stanford.edu

• Adapters' weights in the last transformer block: • We probably did not need adapters in self-attention.

• But adapters in all blocks in output learned

Performance improvements for longer questions



Conclusion and Future Work

Jia, Robin, and Percy Liang. "Adversarial examples for evaluating reading