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Abstract

Language modeling plays a key role in computational linguistics, featuring promi-
nently in many natural-language processing applications. While many studies have
examined word-based representations of text, various groups have begun to experi-
ment with character representations as well. In this paper I present a comparative
study of two language-modeling approaches on a corpus of United States Supreme
Court opinions: a standard Long Short-Term Memory model (LSTM) with word-
embeddings and the same model enhanced with a character-level representation
of the sentence derived from a Convolutional Neural Network (CNN). While both
models struggled on large datasets–perhaps an indication of non-identically and
non-independently distributed data–the combined model failed to achieve the same
loss and perplexity as the word-based model on any inputs, achieving a test-set
score of 2468.71 in comparison with the LSTM’s 258.60. While these difficulties
raise questions about the data and implementations used in this experiment, the
results suggest the technique used to incorporate character-level information into
the word model obfuscated signals as opposed to enhancing them.

1 Introduction

Since the advent of neural-network-based techniques for natural language processing, the field
has relied heavily on the word vectors proposed by Tomas Mikolov et. al in their seminal paper,
Distributed Representations of Words and Phrases and their Compositionality.[5]. These vectors
allow for a flexible and distributed representation of tokens and creates an n-dimensional space in
which to explore mathematical relations. Despite these achievements, such formatting implicitly
discretizes meaning at the word level, ignoring the roles of character-level constructs. This creates
difficulty when dealing with unknown words, a serious challenge when analyzing casual, idiosyncratic,
or misspelled texts.

To address this issue, various groups have explored the possibility of character encodings. These
vectors mimic the structure of word vectors, representing the distribution of neighboring characters
surrounding a given character. A growing field of research involves the combination of word- and
character-level features in models to offer the best of both worlds. In this paper I present a comparative
study of two language models for United States Supreme Court Opinions, the former a standard
word-based model and the latter the standard model enhanced with character-level information.
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2 Related work

Early successes using character-based models emerged in the mid 2010s. Yoon Kim et. al. in
2015[3] demonstrated the potential of using character embeddings in language models, employing
a combination of a CNN, highway layers, and an LSTM to predict output at the word level. This
approach matched state-of-the-art numbers on the English Penn Treebank while using sixty-percent
fewer parameters than the competing word-based models. Luong and Manning [4] applied character
embeddings to machine translation in 2016, combining a standard word-based LSTM approach with
a supplementary character-based prediction mechanism for unknown words. This hybrid model
achieved new state-of-the-art BLEU scores for multiple languages, including a ten-plus-point jump
for English to Czech translation.

In addition to language modeling and translation, groups such as Liang et. al. [1] have used
character embeddings in tasks such as relation classification. In their 2017 paper, the group combined
character-level encodings from a CNN with word-level encodings from a bidirectional GRU to
achieve state-of-the-art results on multiple data sets. These results suggest combining word-level and
character-level information brings value to non-vocabulary classification tasks as well.

In this paper I draw particular inspiration from Kim et. al.’s CNN-, max-pooling-, and highway-layer-
themed approach to character encoding as well as Liang et. al.’s idea of combining encodings in
classification tasks.

3 Approach

In order to design a fair study, I attempted to keep the word-exclusive and the combined models
roughly equivalent in terms of complexity. This proved challenging, as the CNN architectures used in
character-based models frequently employ a multi-stage pipeline of convolutions and max pooling
layers to achieve their results.

In the following descriptions, let eword and echar denote the size of the word and character embed-
dings respectively and let |Vword| denote the size of the vocabulary. Both model uses pre-trained
word vectors from the Stanford University GloVe dataset,[6] while the combined model trains its
own character embeddings.

3.1 Word-based LSTM

The word-based model features a bidirectional LSTM followed by a highway layer and a linear
projection. Given an input tensor x ∈ R(eword), the LSTM passes each word through a shared linear
projection, maintaining a hidden state ht ∈ Reword and cell state ct ∈ Reword for each time step t.
The information from the internal states propagates as each new word enters, allowing for the sharing
of prior knowledge.

The bidirectional LSTM outputs the final hidden states of both the forward and the backward pass.
The algorithm concatenates these to form a vector hcat ∈ R2eword , passes them through a dropout
layer, then feeds them through a highway layer into a vector v ∈ R2eword . The highway layer
computes the following vectors

vproj =Wprojv + bproj) ∈ R2eword

vgate = σ(Wgatev + bgate) ∈ R2eword

vhighway = vproj � vgate + (1− vgate)� v ∈ R2eword

This residual connection allows the algorithm to optionally take advantage of the layer.

As a final step, this vector v ∈ R2eword passes through a linear projection into the dimension of
the output space, producing the vector vout ∈ R|Vword|. The model applies the softmax function to
compute scores and compares them with the target words via the cross entropy loss.
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3.2 Combined model

Whereas the word-based LSTM involves only one core model (followed by linear projections), the
combined model uses two encoding mechanisms, one for words and one for characters.

3.2.1 Character encoder

Given an input tensor x ∈ R(w,echar) (where w is the window size), the model passes the input
through a one-dimensional convolutional layer to produce an output tensor vconv. The convolution
result moves through a leaky RELU activation before a final max pooling layer to produce the tensor
vpool ∈ Rechar .

vconv = Conv1D(x)

vpool = MaxPool(LeakyRELU(vconv)) ∈ Rechar

After the pooling, the resulting tensor passes through a highway layer as described in the prior section,
except this time with a LeakyRELU activation.

vproj = LeakyRELU(Wprojvpool + bproj) ∈ Rechar

vgate = σ(Wgatevpool + bgate) ∈ Rechar

vout = vproj � vgate + (1− vgate)� vpool ∈ Rechar

The encoder sends the highway output vout through a dropout layer to produce the encoded vector
vchar ∈ Rechar .

vchar = Dropout(vout) ∈ Rechar

3.2.2 Word encoder

The combined model follows a similar architecture to that of the word-exclusive model, first passing
the input window through a bidirectional LSTM. The resulting hidden states h1, h2 ∈ Reword from the
forward and backward passes combine to form the vector vword−cat ∈ R2eword . This concatenated
vector passes as-is into the decoding mechanism.

3.2.3 Decoder

Whereas initial designs for the combined-model decoder featured more sophisticated techniques
frequently seen in character-exclusive models, I simplified the mechanism to preserve relative parity
between the models. The decoder receives input vectors vchar ∈ Rechar and vword−cat ∈ R2eword .
Before combining the vectors, the model projects the word encoding through a linear layer into output
vword ∈ Reword (this packages the word information into a vector of comparable length to vchar).

The model concatenates vword and vchar and projects them linearly into Reword before passing the
result through a highway layer without activation. The highway output travels through a final linear
projection into the vector vout ∈ R|Vword|. This vector contains the model’s predictions over the
corpus, which the model compares against the target values via the cross-entropy loss.

4 Experiments

4.1 Data

Kaggle hosts a data set of approximately thirty-five-thousand United States Supreme Court (SCOTUS)
rulings [2] between 1789 and 2017. The files include opinions of all types, such as majority, dissenting,
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and concurring, and feature work from ninety-six justices. Entries include various meta data detailing
the author, date filed, vote breakdown, and more. The samples are scraped from various legal websites,
and while they offer faithful representations of the opinions, they require moderate Regex processing
to standardize formatting and address errant unicode characters.

SCOTUS decisions present numerous idiosyncrasies as compared to most formal texts. The modern
opinions frequently employ atypical or archaic diction and formatting, and older writings burst with
anachronisms and misspellings. These opinions also include unusual footnotes and citations of other
court cases. An example of a modern opinion comes from the Hollingsworth v. Perry (2013) excerpt
below.

All the California Supreme Court’s decision stands for is that, so far
as California is concerned, petitioners may ‘‘assert legal arguments in
defense of the state’s interest in the validity of the initiative
measure’’ in federal court. 628 F. 3d 1191, 1193. That interest is by
definition a generalized one, and it is precisely because proponents assert
such an interest that they lack standing under this Court’s prece-
dents.

Given the first sentence above, the language modeling algorithms would receive inputs and targets as
follows.

Sample inputs and targets
Input Target
All the California Supreme Court ’
the California Supreme Court ’ s
California Supreme Court ’ s decision
Supreme Court ’ s decision stands
. . . . . .

Table 1: Sample inputs and targets

4.2 Evaluation method

For an evaluation metric, I used the standard language-model technique of perplexity. Given a window
of length t and a corpus of size T , one calculates the perplexity of a model’s predictions as follows.

PPL =
T∏

t=1

(
1

P (xt+1|x1, . . . , xt)

) 1
T

Note that this is equivalent to the exponentiated cross entropy loss.

4.3 Experiment details

As mentioned in the Approach section, I kept hyperparameters constant across all models for the
sake of a standardized comparison. I used a window size w = 5, a learning rate α = 0.01, a dropout
rate pdrop = 0.3, a batch size b = 64, a word embedding size eword = 200, a character embedding
size echar = 256, a word vocabulary of size |Vword| = 400001, and a character vocabulary of size
|Vchar| = 201.

The sizes of the vocabularies correspond to the number of words and characters in the corpus plus
values for unknown tokens, padding tokens, start tokens, and end tokens. I selected the embedding
lengths in an attempt to balance memory and computation costs with expressiveness. The other
values came at the example or recommendation of the Stanford University CS224N course staff. Both
models trained with a training set of size 5,000,000, a validation set of size 40,000, and a test set of
size 40,000.
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4.4 Results

The word-exclusive model proved adept on toy datasets, achieving nearly one-hundred percent
accuracy and perplexity scores of one on all inputs. As I scaled the size of the training sets, the model
continued to overfit the training data, typically beginning with a loss between 5.00 and 6.00 and a
perplexity of between 250 and 300 and improving to a little above 3.00 and 20 respectively.

The word-based model encountered difficulty with larger training sets. Though it performed well
on data sets with up to 300,000 inputs, it struggled when training on a set of 500,000 examples,
maintaining initial losses and perplexities yet failing to improve over dozens of epochs. Despite
the constant training-set performance, validation perplexity progressively declined, beginning with
perplexities around 550 and growing super-linearly to more than 100,000 within a few epochs.

Figure 1: Training loss over time

The word-exclusive model exhibited similar behavior when exercised on the full, 5,000,000 example
training set, failing to improve training accuracy yet steadily performing worse on the validation set.

Figure 2: Validation perplexity over time

The combined model exhibited worse performance, consistently failing to match the word-exclusive
model. Even on toy data sets, it proved unable to fit to perfect accuracy. Adjusting the model in one
of the following ways allowed it to reach such accuracy:

• Skipping the linear layer mapping the LSTM output from R2eword to Reword and instead
concatenating it with the character encoding directly

• Removing the highway layer before making predictions
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The amended model required approximately ten times as many epochs as the word-exclusive model
to achieve the same results. Extensive investigation of the highway layer and linear layer revealed no
perceptible bugs, and given these components’ presence in the word-exclusive model and multiple
CS224N assignments (both in terms of design and code), they do not seem broken. On the test
set the word-exclusive model and the combined model scored perplexities of 258.60 and 2468.71
respectively.

Test set perplexity
Word LSTM 258.60
Combined 2468.71

The combined model also proved susceptible to wild swings in accuracy–one batch could produce a
loss around 10.00 or 12.00 only to be followed by a loss of 20.00 or 30.00. Note that given the high
loss, the perplexity for some batches achieved numerical errors, so I omit those spikes in the graphs.

4.5 Analysis

The models’ performance raises multiple questions. Regarding the word-exclusive model, the
degradation in learning capacity at 500,000 examples dropped off precipitously as opposed to in a
gradual manner, suggesting an issue with the data or the model itself. It also seems strange that the
training performance did not continue to decline when increasing the number of training examples
from 500,000 to 5,000,000.

While the model failed to improve on the training set over time, it’s accuracy on the validation set
declined. A drop in validation accuracy often suggests overfitting, yet the absence of high scores on
the training set remains difficult to explain. It seems the gradient updates failed to change accuracy
on the training set while simultaneously damaging the model’s ability to generalize.

As for the combined model, its failure to perform suggests the incorporation of the character-encoding
might have interfered with the word-exclusive model. Projecting the two hidden states from the word
LSTM into a single vector in before concatenating them with the character encoding appears to have
hampered the model’s predictive ability. Note that the resulting vector contained 256 entries from the
character-encoding yet only 200 (not 400) from the word-encoding, which might explain the apparent
loss of information.

The improvements when removing highway layer present a more challenging question, namely why
a layer with an optional residual connection would impede learning. As mentioned earlier, extensive
review of the code in question has revealed no errors, which corroborates the same component’s
ostensibly issue-free appearance in the word-exclusive model and in other CS224N assignments.
While it remains possible that the data prior to the projection offered more value than the data
following it, I do not have a compelling answer and leave this question open.

5 Conclusions and future work

The use of character-level information in this experiment failed to improve the performance of the
word-based character model. The technique used in the combined model seems to have clashed with
the word LSTM, suggesting a more strategic combination of word and character representations
might be preferable to the methods used in this paper.

As for future plans, I would like to further investigate the models’ difficulty learning on corpora larger
than 500,000 words. While such a striking phenomenon might stem from issues with implementation
or design, it might also have to do with the data sets themselves. As mentioned in the analysis
section, the assumption of identically and independently distributed opinions might not hold across
two-and-a-half centuries of Supreme Court justices, writing styles, and spellings.

In addition to refining the two existing models, I would like to apply a character-exclusive approach
to this task by designing a system to predict the following character instead of the following word.
Due to time and budget constraints, I did not include such an approach in this project. I believe a
character model could offer improved flexibility and results as compared to the systems tested in this
paper.
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