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Abstract

In this project, we explore the task of measuring semantic similarity between
visual data and text data. We build two-branch neural networks for learning the
similarity and train and validate on Flickr30K and MSCOCO datasets for image-
sentence retrieval task i.e given an input image, the goal is to find the best matching
sentences from a database. We conduct numerical investigations to quantify and
understand the impact of several components of the proposed architecture on the
image-sentence retrieval task.

1 Background and Motivation

The advent of deep learning has made great strides towards better visual understanding [1], and
generating rich descriptions of visual data, in particular, in the form of natural language. A critical
task for the applications such as bi-directional image and text retrieval [2, 3], image captioning [4]
and visual question answering [5] is to learn joint embedding that entails mapping from two or more
domains into common latent vector space in which semantically associated inputs are mapped to
similar locations.

In this project, we build and study two-branch neural architectures to learn image-text joint embedding
for the image-sentence retrieval task i.e given an input image, the goal is to find the best matching
sentences from a list of given sentences. The formulation and model architecture of our work is
similar to [6, 3], employing triplet ranking loss as the training objective. We validate the effectiveness
of our approach on image-sentence retrieval task on Flickr30k [7] and MSCOCO [8] datasets.

Triplet (i.e query, matching and non-matching) selection or negative mining has been shown to have
an impact on the representational efficiency of image embeddings [9] and cross-modal embeddings
[3]. We complement this work by performing numerical experiments to quantify the impact of image
encoder i.e VGG19 [10] and ResNet50 [11] and negative mining strategies i.e selecting K = 1, 10
hard negatives on the evaluation metrics.

2 Related Work

In this section, literature work related to learning cross-modal joint embedding, its application to the
image-sentence retrieval task and the enablers (datasets) in this context are outlined.

Most popular approaches for obtaining image-text joint embeddings [12, 13] are based on Canonical
Correlation Analysis, which seeks pairs of linear projections that maximizes the correlation of the
two views. These methods have shown state-of-the-art results with image and text features, but have
a high memory cost as they involve loading all data into memory and computing covariance between
image and text data. To scale CCA to larger datasets, [14] and [15] proposed to cast CCA into a deep
learning framework, but this approach suffered from stability issues.

DeVISE [16] applied a margin-based ranking loss to learn linear transformations of visual and text
features into latent shared space. Wang et al. [2] extended their work using two-branch neural



networks and bi-directional ranking loss as training objective, which significantly outperformed
CCA-based methods in both stability and scale.

FaceNet [9] has shown that the method of mining triplets of matching and non-matching pairs
during training significantly improves representational efficiency of the embedding. VSE++[3] has
successfully employed a similar hard negative mining method to learn embedding space across two
different modalities using asymmetric branches and achieved state-of-the-art results. Our work draws
inspiration from these approaches.

A major contributing factor to the progress of deep learning, especially to the problem of image
classification is the availability of large-scale, publicly-available datasets such as ImageNet[17].
Similarly, research progress in the application of image-text matching tasks can be related to the
existence of datasets such as Flickr30K[18] and MSCOCO[8]. A more recent effort to build a much
larger dataset resulted in Google’s Conceptual Captions dataset [19] which has more than 3 million
images, paired with natural-language captions. It will be interesting to explore the task of learning
joint embedding on such a large dataset.

3 Approach

In this section, we first describe the two branch network structure as well as image and text embedding
(section 3.1).Then, we present the training objective for learning image text mapping using triplet
ranking loss (section 3.2). Finally, we present our triplet selection strategy and negative mining
techniques to learn an improved embedding (section 3.3).

Figure 1: The architecture of the two-branch embedding network [2]

3.1 Network Architecture

The embedding network consists of two branches, each of which takes either an image embedding or
text embedding, pass them through one or more layers of transformations, fuse them, and eventually
output a learned similarity score as shown in Figure 1. Each branch is composed of a series of fully
connected (FC) layers, separated by Rectified Linear Unit (ReLU) nonlinearities. We apply batch
normalization [20] right after the last FC layer (without ReLU) to improve the convergence during
training. The output vectors are further normalized by their L2 norm for efficient computation of
similarity score.

The inputs to this network can be either pre-computed image and text features or outputs of other
networks (e.g. CNNs or RNNs). The idea here is that, by feeding each branch with a different encoder
network for a specific modality, the encoder networks will focus on identifying modality-specific
features at first and the embedding network will convert the modality-specific features to modality-
robust features. The network architecture is flexible in that embedding network can accommodate
additional layers as well as can be fine-tuned together with the encoder network.

In our work, we focus on investigating the behavior of the two-branch networks with inputs as
pre-computed image and text embedding as discussed below.

Image Embedding: We adopt a deep CNN model trained on ImageNet dataset as the image encoder.
Specifically, we experiment with state-of-the-art 50 layer ResNet model [11] and 19 layer VGG
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model [10] in this work. We feed the images into CNNs as inputs and extract image features directly
from the penultimate FC layer. The dimension of the image embedding thus obtained is 512 for
ResNet50 and 4096 for VGG19.

Text Embedding: We generate the feature representation of text by summing over the 300-
dimensional GloVe [21] embedding of all words associated with an image and then normalizing it by
the number of words.

3.2 Triplet ranking loss

The training objective is to minimize a triplet loss function, which applies a margin-based penalty
to an incorrect annotation when it gets ranked higher than a correct one for describing an image as
well as ensuring that for each annotation, the corresponding image gets ranked higher than unrelated
images.

Given a training image xi, let Yp and Yn denote its sets of matching (positive) and non-matching
(negative) sentences, respectively. We want the distance between xi and each positive sentence yp to
be smaller than the distance between xi and each negative example yn by some enforced margin m.

d(xi, yp) +m < d(xi, yn) ∀yp ∈ Yp and ∀yn ∈ Yn (1)

Similarly, given a sentence yi′ , we have

d(xp′ , yi′) +m < d(xn′ , yi′) ∀xp′ ∈ Xp′ and ∀xn′ ∈ Xn′ (2)

where Xp and Xn denote its sets of matching (positive) and non-matching (negative) images for yi′ .

To formalize this requirement, the bi-directional ranking loss will be defined over triplets of embed-
dings (xi, yp, yn) and (xp′ , xn′ , yi′),

L(X,Y ) =
∑
i,j,k

max[0,m+ d(xi, yp)− d(xi, yn)]+

+λ
∑

i′,j′,k′

max[0,m+ d(xp′ , yi′)− d(xn′ , yi′)]+ (3)

where [t]+ =max(0, t) and parameter λ controls the strength of ranking loss in either direction.

3.3 Triplet Selection

Identifying the triplets of examples that violate the constraints in eqn (1) and eqn (2) during training
is crucial for achieving the best performance [9]. Based on the definition of the loss, there are three
categories of triplets:

• easy triplets: triplets which have a loss of 0, because d(xi, yp) +m < d(xi, yn)

• hard triplets: triplets where the negative is closer to the anchor than the positive, i.e.
d(xi, yn) < d(xi, yp)

• semi-hard triplets: triplets where the negative is not closer to the anchor than the positive,
but which still have positive loss: d(xi, yp) < d(xi, yn) < d(xi, yp) +m

Each of these definitions depend on where the negative is, relatively to the anchor and positive. We
can therefore extend these three categories to the negatives: hard negatives, semi-hard negatives
or easy negatives. Figure 2 shows the three corresponding regions of the embedding space for the
negative. Ideally, for a given image and text pair, we would like to mine the entire training set for
negative examples. But such a task is computationally not feasible. To avoid this issue, we select
the triplets by mining only the mini-batch in an online learning fashion [9]. Suppose we have a
mini-batch of image and text pair inputs of size B. Several strategies to pick triplets among the valid
ones, to be used in loss computation are

• selecting all hard and semi-hard negatives: select all the valid triplets, and average the
loss on the hard and semi-hard triplets not taking into account the easy triplets (those with
loss 0), as averaging them would make the overall loss very small. This produces a total of
B2 triplets (B (anchors, positive) pairs and B possible negatives)

3



Figure 2: Negative Mining

• selecting all hard negatives only: narrowing the selection to only hard negatives.
• selecting all semi-hard negatives only: narrowing the selection to only semi-hard nega-

tives.
• selecting K hardest negatives: for each anchor, select the hardest K among the mini-

batch, this produces BK triplets which are the nearest among the mini-batch and therefore
contribute most to the loss function.

Though using the hardest negative results only in faster convergence [3], [9] suggested that selecting
hardest negatives can in practice lead to bad local minima early on in training and using semi-hard
negative instead. We explore batch hard mining in our work, employing one hardest example per
mini-batch, (K = 1), multiple hard negative examples (K = 10) per mini-batch and only semi-hard
examples for loss computation.

4 Experiments

4.1 Datasets

We evaluate our proposed model on the Flickr30K [18] dataset and the MSCOCO [8] dataset.
Flickr30K dataset includes 31, 783 images, while the MSCOCO dataset consists of about 123, 000
images and each image is annotated with 5 sentences in both datasets. Following [2], we use 1000
images for validation and 1000 images for testing for Flickr30K dataset and for MSCOCO, we use
1000 images for both validation and testing.

4.2 Experimental setup

We implemented our model using Tensorflow[6] and Keras[22]. We use Adam optimizer with
learning rate of 0.0002. We set batch size to be 64. We apply dropout with keep-probability 0.5 after
ReLU layer and use λ = 0.1 to control the direction of the loss. We use margin m = 0.1 in the triplet
ranking loss.

4.3 Evaluation Metrics

Recall@K (K=1, 5, 10) [4], which indicates the percentage of the queries where at least one ground-
truth is retrieved among the top-K results, is used as quantitative metric in this evaluation.

4.4 Results

Numerical results i.e Recall@1, Recall@5 and Recall@10, when our models are employed on the
image-sentence retrieval task on Flickr30K and MSCOCO datasets are presented in Table 1 and Table
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Table 1: Image-to-Text Retrieval Results on Flickr30K Dataset

# Image-to-Sentence Sentence-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

state-of-art Embedding Network [2] 43.2 71.6 79.8 31.7 61.3 72.4
VSE++[3] 51.3 82.2 91.0 40.1 75.3 86.1

Image
Encoder

Our model with VGG19 image
encoder and K = 1 hard negative 19.6 43.0 56.2 15.3 36.7 48.7

Our model with ResNet50 image
encoder and K = 1 hard negative 13.6 24.4 36.1 11.8 23.6 32.4

Triplet
Sampling

Our model with VGG19 image
encoder and K = 10 hard negative 3.5 12.5 16.7 2.9 10.9 14.5

Our model with ResNet50 image
encoder and K = 10 hard negative 3.6 10.2 18.6 3.4 8.9 15.3

Table 2: Image-to-Text Retrieval Results on MSCOCO Dataset

# Image-to-Sentence Sentence-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

state-of-art Embedding Network [2] 54.9 84.0 92.2 43.3 76.4 87.5
VSE++[3] 64.6 90.0 95.7 52.0 84.3 92.3

Image
Encoder

Our model with VGG19 image
encoder and K = 1 hard negative 30.5 59.5 72.5 21.8 53.0 69.2

Our model with ResNet50 image
encoder and K = 1 hard negative 10.7 35.5 51.3 8.9 29.7 45.1

Triplet
Sampling

Our model with VGG19 image
encoder and K = 10 hard negative 2.9 12.9 20.9 3.5 11.4 18.9

Our model with ResNet50 image
encoder and K = 10 hard negative 5.6 19.4 30.1 6.1 19.3 30.9

2 respectively. We also present the results from [2] and [3], which are state-of-art in this regard and
thus serve as the baseline for the current study. We plot the Recall@1, Recall@5 and Recall@10 on
validation split as a function of training epoch on both Flickr30K and MSCOCO datasets in Figure
3a and Figure 3b respectively.

Our model with best performance i.e VGG19 image encoder and using K = 1 hard negative triplet
selection has shown good results on both image-to-sentence and sentence-to-image tasks. Relative to
state-of-art, however, the performance is lower by about 20− 25% on both Flickr30K and MSCOCO
datasets. One possible reason for this could be due to the fact that we are using GloVe based word
embeddings to represent sentences, which does not take dependency information into consideration.
(We expand on thus further in section 4.5). Another possible reason could just be that we stopped
training process prematurely due to time constraints as seen in Figure 3a and Figure 3b, where the
Recall on validation split does not seem to saturate during training process.

It is to be noted that the term "epoch" in our study should really be inferred as to the number of
minibatches employed during training. For example, Flickr30K dataset which has about 30, 000
training examples takes about 500 minibatches of size 64 to go through the entire training set once. In
our work, we refer to this epoch as 500, instead of common practice as 1. This is just an unfortunate
artifact of the way we are implementing the triplet selection, which happens at each training step for
each minibatch.

4.4.1 Effect of image encoding

For evaluating the impact of different image encoders on our model, we compare VGG19 feature
(4096 dimensional) based results to ResNet50 feature (512 dimensional) based results. Figure 4a and
Figure 4b show how the Recall@10 on test split varies during training using both image encoders on
Flickr30K and MSCOCO respectively. On the Image-Sentence retrieval task, the average performance
gap in Recall@10 using VGG19 features instead of ResNet50 is about 20%. We observe a similar
improvement on Sentence-Image retrieval task as well.
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(a) Flickr30k (b) MSCOCO

Figure 3: Recall on validation split during training

(a) Flickr30k (b) MSCOCO

Figure 4: Recall during training for VGG19 and ResNet50 image encoder

This improvement in the performance shows how the representational capacity of joint embeddings
increases, when a more powerful image encoder is used. Though we have shown how the performance
varies on test split during training, we have selected snapshot of the model based only on performance
on validation split and reported results on test split using the same snapshot. Besides this performance
gap, we find similar trends using either image encoder on how model performance varies due to
variations in either training dataset(size) or triplet sampling strategies.

(a) Flickr30k (b) MSCOCO

Figure 5: Recall during training for K = 1 and K = 10 negative mining
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4.4.2 Effect of triplet sampling

To reiterate our approach of selecting triplets, first we randomly select a minibatch of pairs of query
image and matching text. Then for each pair, we calculate the similarity score of the non-matching
text in the same minibatch (or negative examples) to the pair and rank them in the order of decreasing
similarity. We select either one K = 1 negative or multiple K = 10 negatives and compute triplet
ranking loss, that provides gradient update information during training.

In our experiments, we use a minibatch of size B = 64 and margin, m = 0.1. So, for K = 1 negative
mining, the margin based loss computation depends on 64 triplets and the loss value varies from 0
to 6.4. When using K = 10 negative samples, the loss computation depends on 640 samples for
minibatch and its value is in the range of 0 to 64. Figure 5a and Figure 5b shows how the Recall@10
varies on the test split during training using both K = 1 and K = 10 hard negative samples.

We notice that using K = 10, the training process starts off strong, but performs significantly poorly
as training progress. Our interpretation is that, since we have multiple negatives at each training
step; First the model might change to a "new" mapping that pushes these "old" negatives out, but
ends up with "new" negatives. In the next step while pushing these "new" negatives out, the model
might restore to the "old" mapping and oscillate between these two mappings, thereby creating a
local minima in the loss function. Since we did not spend considerable time tuning hyper parameters
for multiple negative sampling, it is entirely possible that the results using K = 10 negative samples
could be much better than what we report here.

4.5 Error Analysis

To understand the merits and shortcomings of the model, we perform qualitative analysis of our
results. Let us first restate the task we are solving in this work in the context of test set: We have
a test set of 1000 images and each image has exactly 5 matching sentences. For a given query
image among the test set, we would like to retrieve the matching sentence among a total of 5000
candidate sentences. This is done, first by computing feature representation of sentences using the
300-dimensional GloVe [21] embedding of all words of each sentence and then mapping these text
embeddings to joint embedding space. It is to be noted that our model just views the sentences as bag
of words without any dependency information.

The query image is encoded to an image embedding and then mapped into joint embedding space
using our model. In the joint embedding space, we search for the nearest neighbor to this query image
among the candidate text embeddings, which in this case is a total of 5000. If the text retrieved is one
of the corresponding 5 matching sentences of the query image, then our task is successful.

Figure 6: An example of image-to-text retrieval error: query image, its 5 matching sentences and 2
sentences retrieved by our model that correspond to nearest embeddings in joint embedding space.
Semantically similar words in ground truth and in retrieved results is highlighted in color.

Two examples of query image for which the model was not able to retrieve the matching result among
the top 2 results are shown in Figure 6 and 7. For the query image in Figure 6, the model is trying to
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Figure 7: An example of image-to-text retrieval error: the query image, its 5 matching sentences and
2 sentences retrieved by our model that correspond to nearest embeddings in joint embedding space.
Semantically similar words in ground truth and in retrieved results is highlighted in color.

find a similar sentence to the ground truth i.e A band is playing in front of an audience and the
singer is wearing an orange shirt and has tattoos on his arm. Given how we are encoding text
embeddings, the model only views this sentence as Bag-of-Words with no dependency information
i.e a, band, is, playing, in, front, of, an, audience, and, the, singer, is, wearing, an, orange, shirt, and
has, tattoos, on, his, arm

Due to the representation capacity of Glove embeddings, visually discriminate words such as band,
playing, front, audience, singer, orange, wearing, shirt, tattoo, arm might have higher magnitude at
the expense of more common words such as a, is, in, of, an, and, the, is, an, and, has, on, his and
hence the model is looking for sentences that have essentially these words. If we look at the top
match the model retrieved i.e A small boy raising his hand and standing among a lot of orange
pumpkins., we observe a similarity between the words in the ground truth and words in the retrieved
result as following:

orange⇐⇒ orange, arm⇐⇒ hand, standing ⇐⇒ audience,

Though the model notices the orange in the target sentence, it failed to understand the fact that orange
is dependent on shirt in the ground truth, while orange is dependent on pumpkin in the retrieved
result.

Similarly, for the query image in Figure 7, we observe a semantic similarity between the ground truth
i.e. Five men in white short-sleeved shirts and ties stand in a parking lot. and in the top result i.e
Two men , one in a green shirt , one in a white shirt , are building and stacking wooden crates.
in the following words:

five⇐⇒ two, men⇐⇒ men, white⇐⇒ white, shirts⇐⇒ shirt

Clearly, using Bag-of-words approach, which does not take structure into account is where the model
is severely limited and might explain the relatively poor performance to state-of-art methods. But
even with this limited representation of text features, the model has performed well on the task of
finding sentences that have words which are semantically similar to the words in ground truth. Adding
dependency parsing features or using networks that encode temporal information and thus encode
sentences better, is going to help immensely making the model’s performance better.

5 Conclusion and Future work

In this work, we implemented two-branch neural network based architectures for learning the semantic
similarity between visual data and text data and validated them on Flickr30K and MSCOCO datasets
for image-sentence retrieval task. We conducted numerical experiments to quantify the effect of
employing different image encoder and several negative mining strategies on the retrieval task. Future
efforts could explore application of RNN/LSTM based text encoding to capture the dependency
information on learning image-text joint embedding as demonstrated in section 4.5 on where our
model is limited. Due to resources and time constraints, we were only able to explore limited set of
parameters and quantify their impact on the model performance, which could be the focus of future
work as well.
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Code

The code is posted here. link. Other than using pre-computed VGG19/ResNet50/GloVe features, we
have implemented the architecture as well as loss function with several triplet selection strategies
ourselves. The code is structured such that it is easy to extend our work to experiment with all triplet
selection techniques and conduct parametric studies.
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