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Abstract

Previous work on sentiment analysis has focused on different models of emotions,
most notably Ekman’s basic emotions (happy, sad, angry, etc.) [1]. However, one
model of emotion that has not been used much in sentiment analysis is the affective
circumplex, which studies emotions on the dimensions of valence (positive vs
negative) and arousal (low energy vs high energy) [2]. The few studies that have
used this model for sentiment analysis programs have been quite simple, using
techniques such as weighted lexicons and bag-of-words linear regression [3]. The
current work aims to expand the techniques used for this type of sentiment analysis
using deep learning techniques as well. The current work also aims to improve
results by taking word order into account, instead of using bag-of-words models.
The current model uses combinations of LSTMs, CNNs, and regression to create a
sentiment analysis program that aims to improve results on previous state-of-the-art.
Current findings improve on previous state-of-the-art, increasing the correlation of
predicting valence using multitask and self attention models.

1 Introduction

In psychology, there are two main models of measuring emotion - the basic emotion model and the
affective circumplex. The basic emotion model is based on Ekman’s work, which identifies several
emotions that are considered as the discrete, fundamental building blocks of emotion across all human
beings [1]. Examples of such emotions include happiness, sadness, and anger, and can be measured
through methods such as facial expression and physiological measures. As one of the predominant
models of emotion in the field of psychology, it provides a good way of measuring the emotions in
sentiment analysis as well.

Another dominant model of emotion is the affective circumplex, a model of emotion that combines
two dimensions: valence, and arousal [2]. Valence is a measure of the positivity of an emotion
- whether it is something that is positive (e.g. happiness) or negative (e.g. sadness). Arousal is
a measure of the amount of energy of emotion - whether it is something with high energy (e.g.
excitement) or something with low energy (e.g. calm). Note that every emotion is a combination
of these dimensions, and different emotions can have the same valence but different arousal. An
example is excitement, which is a high-arousal positive emotion, whereas calm is a low-arousal
positive emotion.

While these models exist within psychology, most sentiment analysis models do not use these
dimensions to analyze emotion. As an example, Google’s sentiment analysis program is only able
to measure positive versus negative emotions [7]. Similarly, Stanford’s Sentiment Treebank dataset
also only measures along the dimension of valence, ranging from scores of 1-25 of highly negative
to highly positive words [8]. These models for sentiment analysis have extended throughout the
literature, mostly focusing on the single dimension of valence to determine emotion. However, there
is also work being done on discrete emotions as a way of classifying emotion, mirroring Ekman’s
basic emotion model. Currently, it seems like most work is being done on either the dimension of
valence, or on discrete emotions [9]. Thus, most sentiment analysis programs are highly lacking



in the ability to measure along both the dimensions of arousal and valence as part of the affective
circumplex. Because of that, the current work seeks to use deep learning techniques to improve on
the minimal amount of previous work with affective circumplex sentiment analysis.

Improvements in sentiment analysis to include the affective circumplex would be useful in a variety
of domains. On one hand, this simple, 2-dimensional model of emotion would encapsulate a whole
set of emotions at once, allowing for sentiment analysis programs to easily identify and analyze all of
emotion. By being able to identify emotions by a combination of two dimensions (e.g. excitement as
a combination of high positivity and high arousal), more emotions can be expressed instead of having
to use a smaller set of discrete emotions. Thus, the affective circumplex offers a means of sentiment
analysis that efficiently covers many types of emotion. On the other hand, psychological research
would benefit from having a sentiment analysis program to quantify emotion in a way that matches
with their research. Because there are very few sentiment analysis programs that quantify emotion
along the affective circumplex, it is difficult to analyze lots of textual research for psychological
insights. Currently, psychologists have had to adapt other sentiment analysis programs, or have had
to measure emotion manually. Thus, creating a sentiment analysis tool for the affective circumplex
would help psychologists analyze text automatically in the dimensions they are interested in, and
would be a boon for psychological research.

2 Related Work

There are very few datasets that have training labels for valence and arousal, and as such, there are
very few sentiment analysis programs for the affective circumplex. We could only find one dataset
that is labelled along these dimensions, which consisted of two ratings of 1 to 9 for each dimension [3].
For more details about the dataset, see the Data section. The creators of the dataset also provided a
simple model, using bag-of-words and linear regression in order to predict each dimension of valence
and arousal. This model was compared to the target scores in the dataset, and had a correlation of
0.650 for valence, and 0.850 for arousal, and is the current state-of-the-art. For further details of the
model, refer to Preotiuc-Pietro, 2016 [3].

Because of that, we looked to other sentiment analysis architectures in order to gain inspiration for
our current model. One aspect of the architecture that we were looking to include was word order -
the previous work only used a bag-of-words method, and it seems like methods using word order
would benefit sentiment analysis programs for the affective circumplex. As such, we planned on
using an LSTM in order to encode word order of the sentence. One previous model that the current
work takes inspiration from is a LSTM that feeds into a CNN in order to classify sentiment analysis
[4]. A variant of this model was chosen because we wanted to include the LSTM, but also wanted to
use the CNN in order to change the variable-length input of the LSTM to a fixed size input. By using
max-pooling, the CNN is able to turn the variable length into a fixed size based on the number of
filters. Additionally, since this method of LSTM-CNN has been proposed before, and has reasonable
results in other sentiment analysis tasks, this model was used as a baseline for our experimentation.

In the baseline model, one LSTM-CNN is used for each dimension of valence and arousal. However,
instead of using one model each for the dimensions of valence and arousal, we also tested whether
multi-task learning would help improve results of our model. While the affective circumplex
represents all combinations of the two dimensions, research has shown that there appears to be a
V-shaped correlation when actual emotion words are mapped onto the circumplex [10]. Emotion
words neutral in arousal tend to be classified as neutral in valence as well. However, both highly
positive and highly negative valence words tend to be high in arousal. Thus, there seems to be
somewhat of a pattern between the various dimensions of the affective circumplex. This inspired
the use of multi-task learning, because previous research has used multi-task learning to learn inter-
related concepts, such as comorbidity in mental illnesses [11]. This previous research suggests that
interrelations between valence and arousal would benefit from using multi-task learning. As such, we
used a single model based on the LSTM-CNN, but ended added on multi-task learning to predict
each dimension of emotion based on the LSTM-CNN core.

We also wanted to use self-attention mechanisms, since they have been highly effective in other
sentiment analysis programs as well. We modeled our self attention layer after previous work, and
applied the self attention to the hidden states of the LSTM [12]. This self attention layer serves
various purposes in our model - first, we hope that by using this self-attention, we can replicate other
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sentiment analysis program’s success in prediction. Additionally, we think that the self-attention may
help bypass some of the computational complexity of using a CNN, while also providing an effective
means of turning the variable length LSTM output into a fixed size. Thus, one version of our model
incorporates the previous literature by using self-attention mechanisms as well.

3 Approach

3.1 Baseline Model

Figure 1: Overview of Baseline Model

This baseline model serves as the basis for the
other models tested. As such, the following sec-
tion will elucidate the architecture of the base-
line model.

For this model, Facebook posts are first tok-
enized using NLTK’s TweetTokenizer. This spe-
cific tokenizer ensures that each element of the
message is properly parsed out, such as separat-
ing out punctuation from words, and extracting
tokens such as emoticons (e.g. ’:)’).

Once the posts are tokenized, each token is
turned into a 100-dimension pre-trained GloVe
vector. Specifically, the GloVe vectors pre-
trained on Twitter are used, since it is most sim-
ilar to the current domain this model studies,
and is likely to produce higher-quality embed-
dings. Each token is converted to lowercase, and
if it is in the GloVe lexicon, it is turned into the
100-dimension word embedding. Otherwise, the
token is turned into a 100-dimension padding
vector of all zeros.

After creating embeddings from tokens, these
embeddings are fed into the rest of the model.
Two identical models were created in order to
separately predict the dimensions of valence and
arousal, although the inputs (embeddings) as
well as the architecture of the models are identi-
cal. This section continues describing the design
of this model.

At the start of the model, inputs are fed to a
bidirectional LSTM. The LSTM is used in order to contain word-order information. Since this
information was not included in previous models, this model aims to improve on previous work by
incorporating this aspect of the messages. The BiLSTM we use for our specific model has a hidden
layer dimension of 1024.

The outputs of the BiLSTM are then fed into a CNN, and then max-pooled across filters. Originally,
the model solved a classification task, as it treated the sum of the two human labels as a class. For
instance, if a message was labelled with a valence of 4 and 3, the class the model would try to predict
was 7. Since the labels ranged from 1-9, the classes ranged from 2-18. Thus, the CNN had 17
filters, in order to classify the posts into one of the 17 target levels of emotion. The output of these
17 filters was then compared to the target level using cross-entropy loss. However, the results of
this classification task was quite poor (as described in the Experiments section), so the model was
switched to a regression task instead, which tried to predict the label as a continuous variable between
1 to 9.

In the regression task, the outputs of the BiLSTM are fed into a CNN with 256 filters and kernel
size of 5. The outputs of the CNN are max-pooled across each filter. The CNN helps condense the
dimensions of the LSTM output to a fixed size so it can be fed into a Linear layer for regression. The
Linear layer takes 256 dimensions as input, and returns a one dimensional value as the predicted
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emotion level for the input Facebook post. The loss of this predicted value is calculated using mean
squared error.

All code was written from scratch, except for some starter code given by a PyTorch tutorial [5].

3.2 Multi-task model

Since previous research has shown that valence and arousal may be interrelated, we also tested a
multi-task model. This model is a variant on the previous baseline model. Instead of training two
separate models for valence and arousal, the same model is used for both. The LSTM and CNN are
kept the same - however, in order to predict the two dimensions, two separate linear layer heads are
used. Instead of feeding the output of the CNN into one linear layer, the output of the CNN is fed
into one layer for valence, and one layer for arousal. These layers still take 256 dimensions as input
(each), and return a one dimensional value representing the corresponding value for each emotion
dimension. Again, the loss of this predicted value is calculated using the mean squared error. While
this is a simple architecture change from the baseline model, we thought that adding two Linear layer
heads to the same model would help the model learn the core features that underlie both valence and
arousal, and allow for the Linear layer heads to differentiate between the two dimensions.

3.3 Self-attention model

We also incorporated a self-attention layer into one version of our model. The self-attention replaced
the CNN layer, but kept everything before it. The self-attention layer mirrors the one used by Lin et
al [12], and takes in the variable length LSTM to create a fixed length embedding matrix. For our
self-attention layer, we used a hidden layer of 350, and an output layer of 100. Thus, while the LSTM
would give us a matrix of size L by 2048, the output matrix from the self attention layer would be 100
by 2048. Afterwards, the self-attention model also incorporates multitask learning by splitting into
two heads, predicting valence and arousal. Each head incorporated a linear layer that collapses the
vector to dimension 2048 by 1, passes it through a ReLU layer, and then passes it to another linear
layer that collapses it into a single value that represents the predicted value.

4 Experiments

4.1 Data

The current dataset used is one of the few existing datasets that labels on the dimensions of both
valence and arousal [6]. It has around 3000 Facebook posts, and for each post there are two labels
each for valence and arousal, coded by two different human subjects. For the regression task in this
model, the labels for each dimension were averaged to make the target score for the model. For more
information on the dataset, refer to refer to Preotiuc-Pietro, 2016 [3].

4.2 Evaluation method

In order to compare with previous work that measures sentiment analysis on the affective circumplex,
the model was evaluated using the correlation coefficient between the target values of each dimension
and the predicted value of each dimension. Thus, there were two correlation coefficients calculated,
one for the valence dimension model, and one for the arousal dimension model.

4.3 Experimental details

We experimented on using the final layer as either a classifier or a regression. As described in the
Approach section, a CNN was initially used as the output from the model, and had 17 filters for the
17 classes. When tested on a tiny dataset, after around 10 epochs, the model settled on a total loss of
around 4.9. However, the loss given by chance would be 2 * -ln(1/17), giving a loss of around 5.6.
Thus, the classifier model did not give good results, especially since the model should have overfit
the dataset since it was so small.

Because of that, the model was switched to using a linear regression layer. When the model was run
on the same tiny dataset, after 10 epochs, the model settled on a total loss (mean squared error) of
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about 10. This was better than the previous result, since it suggested that the rating was only about 2
or 3 points off the target rating. However, it was still concerning that the model did not overfit the
small dataset.

The learning rate was changed in order to optimize the model, and have it successfully overfit the
small dataset. Initially, a learning rate of 0.001 was used. When it was increased to both 0.005 and
0.01, the model’s loss would keep increasing, instead of decreasing and settling down. Thus, those
learning rates were too high. Additionally, a learning rate of 0.0001 was used, and while it converged
to the same loss as a learning rate of 0.001, it took many more epochs to converge. Thus, a learning
rate of 0.001 was used, since it didn’t cause the loss to explode, while also converging within a
reasonable number of epochs.

Finally, the batch size was experimented with as well. Originally, a batch size of 32 was used.
However, on closer inspection it seemed like the predicted values for each batch were all around the
middle of the scale. This suggested that the averaging of the gradients to maximize the mean squared
error might have removed differences between the more extreme target ratings. Thus, to remove this
possible averaging of the gradients that would cause overly safe and middling predictions, the batch
size was changed to 1. By doing so, the model was able to properly overfit the small dataset and have
a loss near 0.

4.4 Results

For the baseline model, the maximum correlation was around 0.649 for Valence, and around 0.856
for Arousal. These results seemed to stabilize at different times depending on the dimension - for
Arousal, one epoch was enough to be able to predict with fairly high accuracy. On the other hand, it
took about 11 epochs to be able to predict Valence, and even then, the accuracy was much lower than
that of Arousal.

All models were run for 30 epochs. For the multi-task model, the maximum correlation was around
0.696 for Valence, and around 0.852 for Arousal. These results converged much more quickly than
that of the baseline model, especially for the Valence dimension. While the baseline model had a 0.08
correlation at epoch 1, and a 0.55 correlation at epoch 6, the multitask model had a 0.57 correlation
at epoch 1, and a 0.65 correlation at epoch 6. The multitask model had around a 5 epoch advantage in
training over the baseline model, and was able to have good results even at the first epoch.

For the self attention model, the maximum correlation was around 0.679 for Valence, and 0.857 for
Arousal. While these results were overall better than the baseline model, the model also took a while
to converge - starting with a correlation of 0.27 for Valence at epoch 1, before jumping up to 0.67 at
epoch 6. Additionally, while it initially slightly improves over the multitask model at epoch 6, the
multitask model eventually has the highest correlation in later epochs.

The following figure graphs these differences in model results:
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Surprisingly, the baseline results are only as good as previous work, which used a simple linear
regression bag-of-words model. Remarkably, their results for valence and arousal were 0.650 and

5



0.850, respectively, as was the result of the current baseline model. This suggests that the LSTM and
CNN may not have as much of an effect on the data as the linear regression itself. Since both models
end with a linear regression, it may just be that the linear model is able to predict the results, whereas
the underlying LSTM and CNN architecture may just be mixing up the data without extracting any
meaning. Thus, it indicates that a different underlying structure may be needed to improve results,
instead of just replicating the results of previous, simpler models.

However, both the multitask and self-attention models show slight improvements, specifically to the
Valence dimension. Since both methods use multiple heads, it suggests that using the same model to
predict both dimensions may help incorporate information that underlies both valence and arousal.
Nevertheless, the multitask model that uses a CNN instead of a self-attention layer still performs
better. Thus, while the baseline model suggested that the underlying LSTM-CNN architecture did
not improve results, the differences between the multitask and self-attention models suggests that the
architecture behind the linear layers also matters. Thus, it remains to be determined what combination
of methods leads to an architecture that can most effectively model the sentiment before it gets passed
onto the linear layers.

5 Analysis

In order to perform qualitative analysis, the epoch that each model performed best on was chosen.
Specifically, since the correlations for the Arousal dimension were virtually the same across all
epochs and all models, the epoch with the maximal Valence correlation was chosen. For the baseline
model, the 16th epoch was chosen, and for the multitask and self-attention models, the 21st epoch
was chosen.

First, since we were previously worried about the model predicting middling values, we tested how
the model handled extreme values. We picked the messages that had been rated by humans as less
than or equal to 3, or greater than or equal to 7 for each dimension of valence and arousal. Contrary
to our predictions, all three models actually had higher correlations on the partial dataset than the
entire dataset. For valence and arousal, the baseline model had a correlation of 0.782 and 0.879,
respectively, the multitask model had 0.812 and 0.882, and the self-attention model had 0.8039 and
0.880. Thus, the accuracy on the extreme values were actually more accurate than in general. This
suggests that the model is good at predicting extreme valence and arousal, and actually may have
more difficluty determining when a message is neutral. Additionally, it is interesting to note that
while the arousal correlations were around the same for the partial dataset, the valence correlations
followed the expected pattern.

We also looked at the messages that had particularly high losses, and qualitatively examined what sim-
ilarities were in messages with high error. One thing we noticed was that many of the messages with
high loss were present across all three models. Thus, our analysis continues without distinguishing
between the different models.

One consistent error was that the models would predict a positive valence instead of a negative
valence when many exclamation marks were used. For instance, when reading the message "My
friends are going back home!!! I’ll miss you guys so much!!! :((", all models gave a slightly positive
prediction, when the human rating was quite low. Another example message is "Why can’t exs
just DIE after you are done with them!?!?!?LOL......seriously!!!!!!!" This message clearly is highly
negative - however, the model predicted it as slightly positive, most likely because exclamations are
normally used in very positive messages. Thus, due to the large amount of exclamation marks in the
sentence, the model may have expected a more positive emotion even though the exclamation was a
negative one.

Another consistent error was that the models appeared to have difficulty understanding what the
entailment of a situation would mean. For example, the message "will somebody out there please
shoot me already" had a slightly negative predicted valence. However, to a human reader, this message
would entail an extremely negative valence, since it suggests that a person may be suicidal and be at
risk of ending their life. A sentiment analysis program could interpret this at face value - that someone
wants to get shot, without understanding the entailment of suicide and the accompanying suffering
that would cause suicide. An example can be seen for arousal as well - for the message "getting ready
for the big move people", the models predicted a moderately positive arousal. However, the human
ratings were much higher in arousal. This is likely due to the entailment of a ’big move’ involves not
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only moving the people themselves, but also moving possessions, departing from loved ones, and
settling down in a new, unfamiliar place. To a human, moving is not just a big thing - it’s often a large
upheaval, and can even be a significant life event. Thus, the amount of energy that moving entails is
more than can be taken from face value, and requires a human understanding of the entailment of
moving.

6 Conclusion

The current work extends previous work on creating a sentiment analysis program for the affective
circumplex. Previous work with sentiment analysis on the affective circumplex has been limited,
even though it is a prevalent model of emotion in psychology. The current state-of-the-art is a simple
bag-of-words linear regression. The current work extends this model by using deep learning methods
to improve results. The current work uses three models - a baseline LSTM-CNN model, a multitask
variant, and a self-attention variant. While originally formulated as a classification task, a regression
task has shown to perform better at prediction. Furthermore, while the baseline model did not improve
previous state-of-the-art, using both the multitask and self-attention variants allowed for increases in
the correlation of Valence from 0.65 to around 0.69. Thus, the current work improves on previous
state-of-the-art, and improves the prediction of the valence of messages.

Future models will aim at improving the results of the predicted values even more, most notably for the
dimension of valence. Possible avenues for improvement may include using character representations
of embeddings. Since many words in social media posts may be misspelled purposefully in order
to indicate emotion (e.g. ’Happyyyyy’), some words may not show up using GloVe embeddings.
This could be alleviated using character-based embeddings. Another benefit of using character-based
embeddings is that it could also incorporate capitalization information. Currently, the model does
not discriminate between lowercase and capitalized words, even though capitalization (especially in
social media posts) may indicate various emotions.

Additionally, future models may improve on valence by taking semantic meaning and understanding
of entailment into account. Although the BiLSTM sought to improve this using word-order, the
results indicate that there was not much improvement in results than using a bag-of-words method.
However, future models may incorporate other methods to improve semantic meaning, and improve
the results of prediction as well.

7 Additional Information

We would like to thank Anand Dhoot for mentoring this project.
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