
CS224N: Patent Citation Prediction with Content and
Network Features

John Knowles
Symbolic Systems
Stanford University
Stanford, CA 94305

jkn0wles@stanford.edu

Sam Premutico
Computer Science

Stanford University
Stanford, CA 94305

samprem@stanford.edu

Abstract

In our project, we offer citation recommendations for newly submitted and existing
patents in the US Patent Office. In doing do, we attempt to automate a portion of the
job of a patent examiner, who upon receiving a patent application adds additional
citations beyond those included by the applicant. We frame the task as both an NLP
task and network analysis task, since we have both textual features in the patent
applications themselves as well as network features in the existing citation network.
We build off of the model proposed in GraphNet: Recommendation system based
on language and network structure by Ying et al.[4], which provides content
recommendations by analyzing both the content of a document and the network
structure of the document. We modify the GraphNet approach by leveraging
textual and network features in distinct phases, rather than using both in a single
supervised prediction task. We extend the GraphNet NLP feature extraction work
done by training an autoencoder whose encoder’s state is used as the document
representation, rather than mean GloVe vector. Further, in order to overcome
performance issues that arise from a large search space, we implement a clustering
phase in which we cluster document representations in order to filter candidate
documents prior to recommendation before feeding the candidate patents through a
prediction network trained on network features to output the final recommendations.
We find that our complete cluster-then-predict model outperforms both baseline
models and our cluster-only model.

1 Introduction

1.1 Motivation

When a patent application is submitted to the United States Patent Office, the author of the patent
includes in the patent application a series of citations which point to prior art (patents) whose work is
relevant to the patent at hand. The patent examiner then, in reviewing the patent, adds additional
citations which she believes point to additional relevant prior art not already included in the original
application. In their paper Do Applicant Patent Citations Matter? [1], Stanford Law Professor Mark
Lemley and Columbia University Associate Professor Bhaven Sampat study the effect of prior art
listed in applications. The authors found that "patent examiners rarely use applicant-submitted art
in their rejections to narrow patents, relying almost exclusively on prior art they find themselves.
However, this is not because the prior art pointed to is irrelevant, but rather becauase examiners
exhibit a sense of "myopia". That is, examiners believe the work they identify is most relevant in the
review process.

Since the additional prior art surfaced by examiners largely dictates the fate of a patent ap-
plication, we aim to provide partly automate the process by surfacing the most relevant patents for an

examiner to consider when reviewing a single application. We frame this as a link-prediction task in
which we predict the existence of a link (a citation) between a source patent and target patent. To
do so, we make use of both network features (existing links) and natural language features (patent
document text).

1.2 Task

We formalize our task as follows: given a patent a and a subset Ca of the set of patents Sa that a cites,
we attempt to predict the unseen patents which a cites, namely Sa −Ca. We visualize the task below,
where we predict citations for a, with Sa = {b, c, d, e, f} and Ca = {c, e, f}. This means that to
train and test our model, we must hold out a set of edges Sa−Ca which we attempt to predict. In this
case Sa − Ca = {b, d}. We label the patents in the network which a does not cite Fa = {g, h, i}.

Figure 1: Link-prediction task where we predict held-out citations {b, d} for a, given citations
{c, d, f}

1.3 Approach

Our model is inspired by the GraphNet model proposed by Ying et al. which uses network features
and NLP features to predict which posts a Reddit user will engage with. The model extracts NLP
features of a user and post by averaging GloVe vectors over the post and user, respectively. The model
extracts network features by sampling neighbors of a user and post and extracting and aggregating
their NLP features. Finally, GraphNet feeds the concatonated NLP and network features through a
prediction layer to predict which posts a user interacts with (i.e. comments on). Negative sampling
loss is used in the prediction layer, with mean reciprocal rank (MRR) as the authors’s final evaluation
metric.

Once we have generated NLP features in the first phase of the algorithm, we attempt to separate
the use of NLP features and network features into two distinct phases. Additionally, we generate
richer document representations than GraphNet by using an autencoder rather than averaging GloVe
vectors. Once we have generated representations for a each patent, we perform an initial clustering
phase in order to reduce the output space and generate candidate recommendations. In our clustering
phase, we identify the top K patents whose representations are closest to that of the patent for which
we are generating recommendations. Next, in our third phase, we take the K candidate patents
filtered through in the clustering phase and pass them through a prediction network, trained on a
link-prediction task using existing citations as features. Finally, we recommend these K candidate
patents in order of the predicted likelihood of an edge existing between the source and candidate
patent.

2

2 Related Work

Previous work with the dataset was helpful in initial exploration and for problem definition. Work
by Cui, Wang and Zhai [2] on a graph-based approach to link prediction on the US Patent network
provided an overview to graph-based techniques. The team of Leskovec, Kleinberg, and Faloutsos [3]
study the US Patent network using sophisticated, graph-based methods. Work by Ying, Li and Li [4]
on a recommendation system for reddit content, utilizing GloVe vectors for langauge features, proved
invaluable in structuring our recommendation architecture. There exists a large body of literature on
the topic of learning representations from documents. Hinton and Salakhutdinov’s [5] work laid the
foundation for understanding and motivating the use of autoencoder networks as bottleneck structures
for learning fixed length representations in contexts of variable length input. Autoencoders utilize a
bottleneck architecture, in which an input sequence is “squeezed” into a fixed sized representation,
then expanded back to its original size. Further work around document representations takes several
forms. The team of Le and Mikolov [6] used an unsupervised setting, training vector representations
for in-document prediction tasks. Le and Dai [7] use a semi-supervised approach with unlabeled
sequence data, utilizing a LSTM autoencoder network architecture to achieve strong results across
a number of classification tasks. Kaiser and Bengio [8] expand and augment on the traditional
autoencoder structure, introducing semantic hashing and other improvements. Finally, work by
Sutskever, Vinyals and Le [8] on a Seq2Seq network provided the basis for understanding and
development of our autoencoder network.

3 Approach

As previously mentioned, we implement a three-phase algorithm, visualized below in Figure 2. We
first generate document representations using an autoencoder trained on our patent corpus. Second,
we cluster and filter candidate patents by cosine distance to the source patent representation. Third,
we predict the existence of a link between the source patent and each candidate patent using existing
citations as network features, outputting our recommendations in order of our model’s confidence in
the existence of an edge. We now separately describe each phase in detail below.

Figure 2: Our three-phase model. First, patent documents are encoded via the encoder of an
Autoencoder trained on our patent corpus. Second, these 256-dimension encoder representations are
filtered by cosine distance to the encoding of the source patent whose citations are being predicted to
identify the top K candidate patents. Third, these K candidate patents are passed into the prediction
network which predicts the existence of an edge between the source node and each candidate node
and reorders the candidate patents accordingly.

3.1 Baselines

We implement several baselines models, utilizing different document vector representations.

1. TF-IDF Baseline
First, we implemented a TF-IDF algorithm which extracts the TF-IDF scores for each word
in each document and then predicts patents in order of their TF-IDF vector cosine-similarity
distance. We used clustering methods with a cosine-similarity distance measure, returning
the top K documents based on distance.

2. GloVe NN Baselines
We implemented several text-only approaches utilizing GloVe representations as document
encodings. We generate our own GloVe embeddings trained over our patent corpus in order
to better capture word meaning the the patent-domain. We trained using a learning rate of .05
over 50 epochs to generate 256-dimensional embeddings. As patents use highly technical

3

and legal language, we thought it best to train our own embeddings. We used average,
element-max and element-min over the GloVe vectors for each word in our documents. We
used clustering methods with a cosine-similarity distance measure, returning the top K
documents based on distance.

3.2 Network Architecture

Patent citation presents two main issues. First, the high average document size of a patent means
that a system is attempting to extract features from large bodies of text, and the second, the size of
the network increases predictive difficulty. Our method employed a variant on Seq2Seq, an encoder-
decoder network, which makes use of the autoencoder structure to produce vectorized representations
of documents, using the encoder side of the network. Our autoencoder network uses a recurrent
structure, utilizing RNN cells to compute hidden states over all inputs. The task of recommending
citations from this representation uses both unsupervised and supervised learning, utilizing clustering
methods for output space reduction and a supervised prediction network. Each candidate pair of
patent and potential citation from the document cluster is fed to a predictive network and given a link
prediction score. We return recommended documents according to their sorted score.

3.2.1 Autoencoder Network

Our autoencoder network consists of two parts, an encoder and decoder. We utilize an RNN
cell to read over the input sequence, one word at a time, to obtain a fixed dimensional vector
representation. This encoder part of our network is responsible for encoding the input sequence
into a 256 dimensional vectorized form. The decoder side of our network also utilized an RNN cell,
acting as a language model attempting to reconstruct the input sequence. LSTM cells capture the
optimal representation of long range dependencies, however, due to large input sequences, we settled
on an RNN cell to balance capturing feature information and training time. GRU, RNN and LSTM
cells were tested. However, as will be addressed in our conclusion, RNN cells were chosen as a
training time consideration. The update equation for RNN cells is presented below:

ht = Wf(ht−1) +W (hx)xt

ŷ = W (S)f(ht)

3.2.2 Clustering

We take the definition of a document cluster to be the top K documents based on the defined distance
metric, cosine-similarity. We see that we are using a distance measure to attain clusters, which is an
inherently bidirectional task. Our data, however, has unidirectional links. thus, in order to constrain
our predictions, we only take citations from patents filed before the predicted patent. We calculate
the cosine-similarity over all documents, and take a cluster of the the top K candidates. The formula
for cosine-similarity is presented below:

cos-sim(x, y) =
x · y

||x|| · ||y||

3.2.3 Prediction Network

Our prediction network takes in a candidate pair, represented as 256 dimensional vectors, and runs
convolutions over both inputs before concatenating their representations. This concatenation is
convolved and then fed through a linear layer and a sigmoid output layer. We use Binary Cross-
Entropy loss. We train this network on the task of link prediction based on a candidate pair, and
output a binary classification on the presence of a link. We generate candidate pairs representations
for this network using the encoder described earlier.

3.3 Implementation References

To gather our data, we wrote our own scraper to scrape patent data from the USPTO (United
States Patent and Trademark Office), and store it in a local database. We referenced a PyTorch

4

implementation of the Seq2Seq network for our model, editing it according to our specific task. For
our baselines, we trained a Python implementation of GloVe. Other code, such as our MRR metric,
clustering techniques, and prediction network, was self-implemented, but relied in part on assignment
code.

4 Experiments

4.1 Data

The dataset that we use is sourced from Google Patent data. We scraped .txt files on weekly US
Patent acceptances from 1976 - 2001, aggregating text content from Abstract, Description and Figure
sections, and link content from listed citations. This dataset is then stored as a collection of numpy
dictionaries stored locally, queryable by patent id for training. Our dataset consists of a total of
roughly 3 million patents. We only used a subset of the data of approximately 85,000 patents in order
to speed up experimentation and ensure that the target nodes were all present. The average out-degree
of a given node in our subset is 14, meaning that the average node cites 14 patents. This data is then
split into a 90/5/5 training/test/dev sets, which was held constant across multiple training settings.

4.2 Evaluation method

The evaluation metric we use is mean reciprocal rank (MRR), because our task is one of recommend-
ing a list of citations. In patent citations, labels consist of the patent and corresponding citations.
We take the MRR score over labeled links, testing the quality of the recommended citations a given
patent was assigned. MRR over |Q| queries is calculated as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the position of the first ground truth patent in the list of recommended patents. If no
true link appears in the recommendations, 1

ranki
= 0. Note that patent citations are directed edges,

and we consider only those of the relevant direction as true citations.

4.3 Experimental details

Given our link prediction task, to prepare our data for training we need to remove a random subset of
the links in the training data. For our training, we tried several rates of removal, at 10, 20, and 30
percent link removal, using a rate of 20 percent as our final training split. This removed link content
was used as the target output. In order to impose a training/testing split, we used data from different
time periods. This ensured that the patent content would be unseen. Due to space limitations, we
trained over a month of patent data from July 1999, and used the first week of August 1999 as a test set.

Note that we could not simply take all of the patents from a single month as a training set,
since the patents that are cited by a single patent are almost never processed in the same month as the
citing patent. This meant that in addition to taking all of the patents within a time frame to generate
a split, we have to traverse the edges of those in the time-window and add their neighbors to the
set. This meant that the labeled nodes which we try to predict are actually present in the split. Our
training set ultimately had 75,000 patents and our evaluation and test sets had 5,000 each. In order to
constrain the size of our text content, document size was limited to the final 1000 words. The last
section of patent content includes general and figure descriptions, which provide suitable document
summaries. Experiments with smaller document sizes yielded poor clustering results.

Our final The network was trained for 10 hours on a NVIDIA Tesla M60 GPU using Microsoft Azure.
For loss, our current implementation uses the PyTorch implementation of Cross Entropy loss with
Logits and for our optimization, we used the SGD optimizer with learning rates .005 with a decay of
1e−6.

5

4.4 Results

Table 1 reports results on our evaluation set of 5,000 patents using values of K = 50, 100, 300,
and 500. TF-IDF Baseline and GloVe Baseline correspond to the baselines outlines above. Cluster
Distance uses only the output of the clustering phase without the prediction network. Cluster +
Predict uses the entire network outlined above.

Table 1: MRR Results Across K
Model K=50 K=100 k=300 k=500
TF-IDF Baseline 0.003 0.011 0.008 0.014
GloVe Baseline 0.014 0.016 0.016 0.018
Cluster Distance 0.172 0.172 0.174 0.175
Cluster + Predict 0.164 0.169 0.185 0.185

Table 2: Experiment results.

We provide analysis of results below.

5 Analysis

We see that TF-IDF vector cosine distance performs quite poorly. Note that MRR reports 0 for
instances where there is no true patent citation among those returned, which explains why we see
improvements as K increases. Thus the worst-performing models, namely TF-IDF, experiences solid
improvement as K increases because we have fewer instances in which no true citation is present in
the output predictions. Looking at TF-IDF, we see that the majority of outputs do not contain a true
citation in the top 50 returned, explaining it’s large increase across experiments.

We see that Cluster Distance initially slightly outperforms the prediction model, meaning
that the initial ordering of documents by cosine distance is more accurate than the confidence that the
prediction network has in the existence of an edge. However, as we increase K the full prediction
network actually begins to outperform the clustering model. Intuitively, this means that the prediction
network is able to identify true citations which previously were not in the, say, top 100 returned
results based on clustering but were in the top 300 and then accurately predict a link to it with greater
confidence than any of those previously in the top 100. As we do not see this phenomenon occur
further at K = 500, this perhaps means that patents at a distance of 100-300 often contain true
citations that the prediction network can identify most confidently.

Qualitatively, we found that patents that relied on more frequently used terms performed worse in the
recommendation task. We take this to be a standard result, as more unique documents had more unique
representations. Given our clustering task, we returned higher quality across top documents, but
lower overall quality clusters over these more unique documents, as the clustering algorithm struggled
to find similar documents. Given the standardized nature of patent submissions, we have a set of
commonly used terms throughout all patents. For example, words like ’application’, ’continuation’
and ’disclosure’ are surprisingly common across patents. Given the presence of these terms and the
fact that patents follow a standard, we find it harder to differentiate among patents using standard
forms. In future work, we could leverage this fact by clustering > K candidate

Additionally, in an analysis of the patent recommendations with lower MRR, we saw that a large
number of these seed patents had a relatively low degree. In contrast, the patents with large numbers
of citations performed better, especially at high values of K. This intuitively makes sense, as a patent
that cites 30 other patents has more true citations to surface than does a patent which cites 15. Future
experimentation using an evaluation metric which is not biased towards higher-degree patents, unlike
MRR, might be worth pursuing.

6 Conclusion

In conclusion, this project has shown the ability of a deep learning system to find optimal representa-
tions of text documents in vector space. Several techniques were explored in order to accommodate

6

the large search space. Through coupling of multiple architectures, an autoencoder network, cluster-
ing algorithm and a predictive network, we were able to take advantage of optimizing over multiple
contexts, as improvements to one system yielded improvement across the entire architecture. How-
ever, the length of our documents and the size of our network proved to be a formidable hurdle to
success in our project. Looking forward, there is much room to improve on our current architecture.
In our autoencoder network, explorations around network architecture, including the use of an LSTM
cell to improve long range information capture, and increasing the hidden layer size of the cell, may
result in more optimal document representations. our network chose a representation size of 256, but
experimentation around different sized representations may result greater ability to encode document
information. Additionally, with an established training/testing pipeline, an attention model could help
focus the representations on the most important parts of the input, though refinements to the attention
model would have be made in order to optimize speed of training.

7 Additional information

Custom Project TA: Amita Kamath

References
[1] C. Cotropia, M. Lemley, B. Sampat. Do Applicant Patent Citations Matter? 2013.
[2] J. Cui, F. Wang, J. Zhai. Citation Networks as a Multi-layer Graph: Link Prediction and
Importance Ranking. 2010. .
[3] J. Leskovec, J. Kleinberg, C. Faloutsos. Graphs over Time: Densification Laws, Shrinking
Diameters and Possible Explanations. 2005.
[4] R. Ying, Y. Li, X Li. GraphNet: Recommendation system based on language and network
structure. 2017.
[5] G.Hinton, R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. 2006.
[6] Q. Le, T. Mikolov. Distributed Representations of Sentences and Documents. 2014.
[7] A. Dai, Q. Le. Semi-supervised Sequence Learning. 2015. arXiv:1511.01432
[8] L. Kaiser, S. Bengio. Discrete Autoencoders for Sequence Models. 2018. arXiv:1801.09797
[9] I. Sutskever, O. Vinyals, Q. Le. Sequence to Sequence Learning with Neural Networks. 2014.

7

	Introduction
	Motivation
	Task
	Approach

	Related Work
	Approach
	Baselines
	Network Architecture
	Autoencoder Network
	Clustering
	Prediction Network

	Implementation References

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Additional information

