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Abstract
The purpose of this project is to create a
model to predict a sentence-level audience re-
action to a written speech. This model could
be immensely useful to a politician or exec-
utive because it provides a heuristic for the
effectiveness of the speech. This project ap-
plies a recently developed, computationally
efficient, context-encoding model- originally
intended for medical document classification-
to the CORpus of tagged Political Speeches.
The organizational complexity of speeches is
overcome by processing large amount of con-
text to effectively classify audience reaction.
Model experiments indicated that increasing
context size is of limited importance in accu-
rately predicting audience responses. Over-
all, the model achieved moderately successful
classification results.

1 Introduction
Speeches are often intended to provoke an
emotion or action in their audience, so a

predictive analysis ahead of delivery can be
invaluable to successfully driving people to-
wards the intended goal. Audience reaction
is the simplest indication of more complex in-
ternal feelings: a person typically cheers or
claps when they are pleased, and conversely
boos when they are displeased. The model in
this project intends to predict how specific ar-
rangements words influence human emotion
in the context of political speeches, a power-
ful tool for politicians and influencers in gen-
eral.

Historically, a project with similar scope
was limited by two factors: lack of sufficient
labeled data, and an efficient neural archi-
tecture to capture of idiosyncrasies of po-
litical speeches. The former limitation was
overcome by the creation of the CORpus of
tagged Political Speeches (CORPS) in 2010.
The latter limitation stems from the unique
structure of political speeches. Standard
challenges of understanding spoken word are
compounded by unconstrained references and
quick topical shifts.

This project seeks to successfully overcome
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the organizational and semantic complexi-
ties of political speeches by implementing
the Context-LSTM-CNN model to incorpo-
rate lots of leading and lagging context into
its audience-reaction predictions.

2 Related Work

2.1 Sentence Classification

The underlying problem type of this project-
sentence classification- has been the focus of
NLP research from the outset. There have
been a plethora of architectures suggested,
each tailored made to the unique flavor of
classification problem at hand. This section
describes earlier models for reaction-based
sentence classification.

Initially outlined by Yoon Kim in 2014, the
CNN based approach for sentence classifica-
tion has long been standard. Yoon achieved
a high of 88.1% accuracy using a 1 convo-
lutional layer on a simple positive/negative
classification task, and set the standard for
classification architectures to come. [Yoon,
2014] However, convolution did not maintain
long distance dependencies in sentence and
paragraph structure. [Song, 2018] Sainath et
al. combined the traditional CNN architec-
ture with an LSTM, showing that a combined
model decreased word-error rate by as much
as 6% on speech-search tasks. [Sainath, 2015]

Lee and Dernoncourt demonstrated the ef-
fectiveness of including context in improv-
ing accuracy of classifying short texts. [Lee,
2016] However, their approach would incur
significant computational costs if large his-

tory was incorporated into the model. [Song,
2018] Instead, Song et. al decided to use
FOFE encoding first put forward by Zhang et
al, maintaining performance en-par with tra-
ditional RNN architectures without increas-
ing computational complexity with size of
context. [Zhang, 2015]

2.2 Political Speech Analysis

Strapparava et al, the creators of the CORPS,
ran a variety of experiments on the data-set
to examine NLP’s ability to judge persuasive-
ness in political speeches. The experiment
showed that a model can be trained to sepa-
rate Republican and Democrat speeches. Fol-
lowing up on this model, the paper outlines
a basic classifier used to predict audience re-
action grouped into three classes: positive-
ironical, neutral and micro. The classifier
achieves 0.625, 0.658 and 0.641 precision re-
spectively, leading the team to claim that
the "results show that this could be a viable
way of studying the persuasive power of dis-
course." [Strappava]

3 Approach

This project implements three different ar-
chitectures to show a development of sophis-
tication and performance as each architecture
improves on the flaws of the previous design.

1. Two-layer CNN (Baseline)

2. LSTM-CNN

3. Context-LSTM-CNN

2



Figure 1: C-LSTM-CNN Model Overview

Neither architecture [1] or [2] will be given
context, but rather trained to predict audi-
ence reaction based solely on the features it-
self.

The C-LSTM-CNN architecture [3] [Figure
1], outlined in the Song et. al paper [2], is
the main focus of this paper. The C-LSTM-
CNN architecture is the most innovative as
it efficiently incorporates large amounts of
context without linearly increasing computa-
tional costs.

3.1 Pre-processing

3.1.1 Data Distribution

In order to simplify the problem, all avail-
able tags were grouped into four primary cat-
egories: Applause, Laughter, Boos, Audience
Participation. Per Figure 2, it is evident that
that there is mis-distribution of tags between
the four classes. In order to not throw away
valuable data, the data was artificially sorted
so that trainging/dev/test set all maintained
the same data distribution.

Moreover, the tags represent 0.0084 density
in the speeches. This means that the vast ma-
jority of sentences do not have a (notable) au-
dience reaction. In order to not over-train on
null-response sentences, 45,000 null-response
sentences were chosen at random to include
in the final distribution. Each sentence- with
its leading and lagging context- was treated
as an independent data-point. Speech infor-
mation was not encoded as input.

3.1.2 Lemmatization and Padding

Nltk.stem.WordNetLemmatizer was used in
order to transform inflected words into their
original root word so that we can pull the
correct wort embedding from the Word2Vec
library.

The sentences were set to a max length of
30 words. If the sentences were shorter, they
were padded with a PAD token. If a sen-
tence within the context was longer than 40
words, it would be split into two sentences
and treated accordingly.

3.2 LSTM-CNN Encoding

The right-hand side is a standard LSTM-
CNN pairing common in many sentence clas-
sification tasks. We convert each word in
a target sentence into an embedding using
Word2Vec and feed through a bi-directional
LSTM to get forward and backward hidden
states for each cell. These states are concate-
nated and passed as inputs to five indepen-
dent CNN layers, each with a different ker-
nel size (varying from 2 to 6). The CNN
independent layers with max-pooling are de-
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Figure 2: Class Distribution

signed to extract features from every part of
the sentence and catch different sized inter-
dependencies.

3.3 FOFE Encoding

The main innovation in this architecture is
the use of FOFE encoding. The embedding z
for a sentence (x1, x2, . . . xU) is initialized to
z1 = x1, and then calculated recursively for
u ∈ 2 . . . U as

|z|U = α ∗ z(u−1) + xu (1)

The parameter α is the forgetting factor.
This puts heavy bias on sentences more lo-
cal to the target sentence while keeping the
importance of all words within the sentence
the same. The dense layer provides a hid-
den layer that can be concatenated with the

encoding of the target sentence and then clas-
sified.

For the FOFE encoding, we start by en-
coding each sentence into zsent with a slowly-
decreasing αsent. These encodings are then
themselves encoded into the embedding using
a rapidly decreasing αsent. This is calculated
starting with zcont1 = zsent1 and is calculated
recursively for m ∈ 2 . . . |Cleft| where

zcontm = αsent ∗ zcont(m−1) + zsentm (2)

Although the model architecture is not orig-
inal to this project, all the pre-processing
code and architectures are implemented
from scratch. Additionally, all the hyper-
parameter and architectural changes (de-
scribed in experiments section) are original.

3.4 Model Training

The scores are transformed to a conditional
probability distribution of labels by applying
softmax over the scores for each crowd re-
action label. The networks are trained with
stochastic gradient descent to minimize the
negative log likelihood. In the end, the model
outputs one label of audience reaction based
on which conditional probability is higher.

4 Experiments

4.1 Data

CORpus of tagged Political Speeches
(CORPS). The political speeches are tagged
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Figure 3: Data Statistics

with audience reactions, like “Applause” or
“Boos.” The statistics of the data set are
included above [Figure 2]:

60% of the data set was set aside for train-
ing, 20% for validation and 20% for test. This
ratio was chosen because our data set is not
that large. Data was provided courtesy of
the Carlo Strapparava and is not publicly ac-
cessible. A link can be provided on request.
[Guerini, 2013]

4.2 Evaluation Metrics

In order to evaluate individual model perfor-
mance, we used the following metrics:

Accuracy =
true positives

All Examples
(3)

Precision =
true positives

true positives+ false positives
(4)

4.3 Experiment Details

Summary of different experiments can be
found in Table 1.

Table 1: Hyperparameter Tuning
Hyperparameter Choice Tested

LSTM Hidden Size 100 50-300
CNN Stride 2 1-5

Learning Rate 0.001 0.001-0.01
Dropout Rate 0.3 0-1
CNN Pooling Max Max-Mean

CNN Output Channels 10 5,10,20,50

We experimented with a couple of LSTM
hidden sizes. 100 was the optimal trade-off
between information capture and training ef-
ficiency. We believe that increasing hidden
state size could capture final details about
sentence structure, but would take 2x-3x time
to train. Decreasing learning rate did in-
crease training time 1.4x but was justified for
the consistent training. Given the complexity
of the architecture, it became clear that it was
robust in isolation. Adding a large dropout
probability only inhibited learning.

Aside from the hyper-parameter tuning,
the key experiment was the amount of con-
text that was fed into the FOFE encoder.

4.4 Results

All results can be found in Table 2. The CNN
baseline model performed as expected, rela-
tive to a baseline set out in Strappava. The
LSTM-CNN model was a minor improvement
on the baseline model, but did not show the
significant gap that the architecture improve-
ment would suggest.
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Figure 4: Context vs. Accuracy

Table 2: Model Test Accuracy and Precision
Model Accuracy Precision

CNN (baseline) 0.604 0.62
LSTM-CNN 0.622 0.701

C-LSTM-CNN (best) 0.745 0.76

We ran four different version of the C-
LSTM-CNN model, varying the total leading
and lagging context used. The values in the
table represent the optimal context of our ex-
periment, 15 lines. The other test-accuracy
values are plotted in Figure 4 and are dis-
cussed in the analysis section.

5 Analysis

5.1 Error Analysis

5.1.1 Bad Context

Sentence: "He would emphasize that I was
height-challenged to begin with."
Leading Context: NULL
Lagging Context: "You’re a hard act to
follow. Thank you, Mr. President. Ladies
and gentlemen, I am filled with immense

pride as I stand here in our Capitol City
today and take part in this national celebra-
tion on teaching and teachers..."
Tag: Laughter
Prediction: Applause

The model recognized that this line has
some audience reaction, but it mis-classified
the type. This example it difficult for the
model because there is no leading context
(it is the beginning of the speech) and uses
indicator words like "emphasize" that may
throw the model off.

5.2 Per Class Accuracy

Overall, the model has moderate success in
accomplishing the desired task. The model
showed a 0.141 improvement in accuracy over
the baseline, which is a notable improvement.
After optimizing the hyper-parameters, it be-
came clear that the skewed distribution of the
training data did not contain sufficient ex-
amples of Boos and Audience Participation
classes to effectively train, and so it over-
fitted on Null and Applause classes [Figure
]. Upon further reflection, there seems to
be little pre-processing improvement to be
made, and the bottleneck remains the under-
representation of some data classes.

5.3 Context Saturation

The most surprising outcome of the model
can be seen in Figure 4. For the optimal
set of hyperparameters, there appears to be
a saturation point of 15 lines of context. Al-
though not intuitive, the existence of a sat-
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uration point is prudent. Initially, raising
the amount of context increases the amount
of predictive information that the FOFE en-
coding can capture, increasing accuracy num-
bers. However, there comes an inflection
point where further context doesn’t possess
predictive value and instead acts to dilute the
value of the FOFE encoding.

6 Conclusion

Although the peak accuracy of 0.745 would
not suggest that our model is a practical tool
for a politician or leader in its current itera-
tion, it is a notable result for the task. The
model has moderate ability to predict how
a human- a complex composition of signals-
will do based on a set of characters. This
project shows that there is potential for fur-
ther exploration in word-based prediction of
human reaction. Future work would depend
on the availability of more data and the de-
velopment of an even more effective encoding
methodology.

7 References

[1] Guerini, M., Giampiccolo, D., Moretti,
G., Sprugnoli, R., Strapparava, C. (2013).
The New Release of CORPS: A Corpus of
Political Speeches Annotated with Audience
Reactions. Lecture Notes in Computer Sci-
ence Multimodal Communication in Political
Speech. Shaping Minds and Social Action,
86-98.

[2] Lee, Ji Young and Franck Dernoncourt.
2016. Sequential short-text classification
with recurrent and convolutional neural
networks. Proceedings of the 2016 Confer-
ence of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies.

[3] Sainath, Tara et al. 2015. Convo-
lutional, long short-term memory, fully
connected deep neural networks. In IEEE
International Conference on Acoustics,
Speech and Signal Processing.

[4] Song, Xingyi et al. "A Deep Neu-
ral Network Sentence Level Classification
Method with Context Information" ACM,
2018.

[5] Strapparava, C., Guerini, M., Stock, O.
(n.d.). Predicting Persuasiveness in Political
Discourses.

[6] Yoon Kim. 2014. Convolutional neural
networks for sentence classification. In The
2014 Conference on Empirical Methods in
Natural Language Processing.

[7] Zhang, Shiliang et al. 2015.The fixed-size
ordinally-forgetting encoding method for
neural network language models. In Pro-
ceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics
and the 7th International Joint Conferenceon
Natural Language Processing.

7


	Introduction
	Related Work
	Sentence Classification
	Political Speech Analysis

	Approach
	Pre-processing
	Data Distribution
	Lemmatization and Padding

	LSTM-CNN Encoding
	FOFE Encoding
	Model Training

	Experiments
	Data
	Evaluation Metrics
	Experiment Details
	Results

	Analysis
	Error Analysis
	Bad Context

	Per Class Accuracy
	Context Saturation

	Conclusion
	References

