
Generating natural language answers

Madhav Sharan
msharan@stanford.edu

Abstract

Question answering systems based on knowledge base takes a natural lan-
guage query and generate facts like <subject,predicate,object> which can
be used to answer the query. However answer presentation is usually left
as a downstream task. In this work we try to generate natural language
answers using a sequence to sequence network which can be trained as a
single model. This task is very challenging due to multiple reasons like find-
ing right entity, extracting correct facts, generating grammatically correct
answer etc. What we found is that if we restrict the problem by providing
the system with golden entities it becomes much easier but it still struggles
with issues like using correct gender pronouns. What we also found is the
lot of information needs to be copied from question to directly in answer
like entity name. Main contributions of this effort is demonstrating that
given a dataset of natural questions and answers we can make a end to end
model which generates natural language answer. Work is mainly done on
chinese but since there is no language specific component it should work on
other language datasets as well.

1 Introduction

In a question answering task like SQUAD, system is presented with a text query and a
paragraph which might have answer to the query. This system is expected to highlight
answer to the query in provided passage or output a span which should answer the query.
There are other variants of question answering task like OpenDomain question answering
where system searches for answer in wikipedia paragraphs instead of taking a paragraph
as input. KB (Knowledge Graphs) are data-stores that can store information in <S,P,O>
(<Subject, Predicate, Object>) which can be used to represent a fact. Here subject can be
an entity like country India, predicate can be an attribute of country like national motto and
Object can be another entity or a value like Satyamev Jayate. A question answering system
based on KB takes a query and generate <S,P,O> which can be used to answer the query. In
all these approaches provided answer is either structured response or a wider output which
should answer the question. This paper attempts to generate a natural language answer like
“National motto of India is Satyamev Jayate”for a question“What is the national motto

of India?”. This task is very challenging as answer needs to be fluent, it should take care
of using entity specific language construct like gender specific pronoun etc.

2 Related work

There are some related work which generate text from a given content like [1] Puduppully
et al which try to generate description of a data table. There are papers related to question
generation like [2] Zero shot question generation like from Elsahar et al, which takes an
answer and entity and generate questions. Elsahar et al did regex matching to collect
answers like sentences from wikipedia text for a given subject and object. Then they feeded

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

that fact and a set of training questions to train a seq to seq network which takes a facts
and answer and generate questions. This task was aimed to generate set of question dataset
for any given fact. Task described in this paper aims at generating answers given question
and set of related facts.

3 Approach

Given a question, answer pair and a set of facts about entity present in question and answer
we attempt to learn mapping from questions and facts to answers. Figure 1 describe full
model which we will describe in parts in below subsections. To summarize model takes a
natural language question encodes it using a RNN and applies attention on encoded vector.
Model also takes set of facts and encode each fact into a fixed size embedding and applies
attention on set of facts. Decoder receives both encoded question and facts and decided
whether to copy from question, or refer to fact or generate a altogether new token from
what it has learned.
One assumption to be noted is that model expects that relevant facts are feeded with
question. It does not attempts to find facts related to possible entity spans in question but
instead assume that training and test set have annotated set of entities.

3.1 Encoder

Encoder takes input and learns a fixed size sequence which can be fed into subsequent
network. In CoreQA[1] approach we use two encoders one for question and other for facts,
both of them are explained in below subsections.

3.1.1 Question Encoder

A natural language question is split into tokens and then a bi directional RNN is used
to transform them into a fixed sequence vector which is concatenation of hidden states of
both forward and backward RNN. If forward and backward hidden layers are represented
as {h⃗1, ..., h⃗m} and { ⃗hm, ..., ⃗h1} where m is length of tokens question Q then encoded repre-
sentation of q can be written as [h⃗m, ⃗h1]

3.1.2 Fact Encoder

Let’s denote the subject, property and object of one fact f as s, p and o, then we can
form es, ep and eo as individual embeddings of subject, property and object. One fact is
then represented by concatenating es, ep and eo. List of all relevant facts become {f} =
{f1, ..., fn} where is n is total number of facts. This is refered as KB through out the paper
and also in Figure 1.
In addition to learning distributed representation of question and candidate facts, we define
the matching scores function between question and facts as matching function defined by a
two-layer perceptron. This function takes question and one fact and is used while updating
final output state.

3.2 Decoder

Decoder takes in Q and KB described above and tries to generate natural language tokens
based on those, below approaches differentiates it with generic decoder.

3.2.1 Answer words prediction

Final output token is decided in a probabilistic way from below three mode, predict mode,
copy mode and retrieve mode. In predict mode output is chosen from target vocabulary,
in copy mode token is chosen from question and in retrieve mode it’s chosen from KB.
It’s done this way as generated word could be in question or facts or could be generated
from vocab to make linguistic sense. At each step final generated word is decided by adding

2

Figure 1: Model description

∑
mode−>copy,predict,retrieve pmode(yt|st, yt−1, ct).pm(mode|st, yt−1)

where pm is the probability function to compute probability mode being copy, predict or
retrieve.

3.2.2 State update

Like usual decoder predicted word at step t − 1 is used to update state t, but model
does not uses just word embedding but also attention outputs of Q and KB. This is
done because final word will not be always from vocabulary. More specifically, yt−1 will
be represented as concatenated vector of [e(yt−1), rqt−1

, rkbt−1
], where e(yt−1) is the word

embedding associated with yt−1, rqt−1
and rkbt−1

are the weighted sum of hidden states in
Q and KB corresponding to yt−1 respectively.

3.2.3 Reading short-Memory Q and KB

Q and KB are fed in both ways the encoded form to represent meaning and also attention
scores which tell the positional information of tokens in question and <s,p,o> in fact.

4 Experiments

For first milestone I have understood the training data and evaluation metrics. I have first
few layers ready and I am working on next few in coming weeks. In my analysis I tried
to objectively look at training data and understand variation. Authors were kind to open
source training and evaluating data which is in chinese and I’ll be describing that in below
sections. I have already written code for -

• Tokenizing chinese sentences into sub words using jieba tool[2]. There are some
options available like doing word tokenization or sub word.

• Converting data in multiple formats to a single format.
• Making embedding layers from question and facts.
• Evalauting synthetic dataset.

3

I also spent some time to look for data in english, closest I could find is WikiAnswers [3]
in which each row has a list of question a answer and it’s accompanied by another dataset
having knowledge base.

4.1 Data description

4.1.1 Synthetic data

We have two datasets available one of them is synthetic and created by hand crafted set of
approximately 100 question answer pattern. Example from paper is When is %e birthday?
-> She was born in %m %dth where the variables %e, %y, %m, %d and %g (deciding she or
he) indicates the person’s name, birth year, birth month, birth day and gender, respectively.
KB is randomly generated which has only birth year, birth month, birth day and gender
facts for 80,000 entities. Below is some data which is finally provided in original text, here
<ent_1> denotes entity
Question and answer pair -
<ent_1>是多会出生的 <ent_1>是 1963年 10月 20日出生的
<ent_1>的生日是几号 <ent_1>的生日是 10月 20号
<ent_1>出生于几月 <ent_1>在 10月出生

KB facts about <ent_1> -
<ent_1> 出生年 1963
<ent_1> 出生月 10
<ent_1> 出生日 20
<ent_1> 性别 男

Finally we have 320,000 KB facts and 239,922 synthetic question and answer pairs.

4.1.2 Open Domain dataset

Authors of [1] found GenQA dataset [4] which is based on a community QA website. KB
is constructed by crawling web pages and a set of fixed question answer pairs. This data is
very noisy authors quote However, the original Q-A pairs only matched with just one single
fact. In fact, we found that a lot of questions need more than one fact (about 20% based on
sampling inspection). We also found by spot checking that some Q-A pairs and facts were
unrelated and many questions were not factoid.
Some statistics about dataset are

• Total rows - 505,021
• Maximum character in question 13
• Maximum character in answer 10
• Total unique subject 24,216
• Total unique predicate 3,271
• Total unique object 23,921

#of QA pa i r with 1 f a c t 418 ,615
#of QA pa i r with 2 f a c t s 681 ,69
#of QA pa i r with 3 f a c t s 13 ,629
#of QA pa i r with 4 f a c t s 3104
#of QA pa i r with 5 f a c t s 921
#of QA pa i r with 6 f a c t s 283
#of QA pa i r with 7 f a c t s 273
#of QA pa i r with 8 f a c t s 15
#of QA pa i r with 9 f a c t s 5
#o f QA pa i r with 10 f a c t s 6

4

4.2 Baseline model

As a baseline we used similar model like assignment 4 and feeded question as source and
answer as target. This baseline will show how well a sequence to sequence model will do
without a KB and with no operation of predict, retrieve and copy.

4.3 Evaluation

We will rely on automatic evaluation for our problem. As paper suggests in automatic
evaluations we check if gender is predicted correctly, if answer is able to retrieved from KB
correctly as in object from KB is present in generated answer.
This evalaution is borrowed from paper [1] apart from this we also want to get some sense of
fluency through automatoc evaluation. For this we will use dataset BLEU score for which
we already have code from assignment 4.

5 Results

Due to limited time we could only train on synthetic datset. Author hope to work on this
post course completion. Here P (gender) denotes how many time model used correct gender
terms, this was annotated in dataset so we end up calculating true positives / total positives.
Same applies for year.
Automatic eval

P(gender) P(year)
Base l i n e − 70 .1 10
CoreQA impl − 86 .3 69 .1

This worked below expectation as paper clearly showed approximately 15% better results.
This could due to bug in our implementation or less carefully tuned network.

6 Analysis

This was very complex to implement model as it just not uses a sequence to sequence but
passes on outputs of intermediate layer to many other layers. Given data was available in
chinese we learned how to go language independent and trusted more on math that print
examples. We realized that hyperparameter tuning is very difficult, For sake of keeping
experiments simple we kept embedding size of question and fact constant and did not use
multilayer RNN. We kept changing learning rate, batch size and tried to use less number
of facts and see how it affects performance. We looked at scraped data and found it very
noisy like many examples had unrelated facts, many questions were not factoids and many
answers were statemnets which were not related.

7 Conclusion

It’s very possible to use end to end model to generate question and answer but it’s hard to
train. Obtaining good training data is very difficult and scarped data has lot of noise.

8 References

[1] Data-to-Text Generation with Content Selection and Planning Ratish Puduppully et al
[2] Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and Entity
Types Hady Elsahar et al
[3] Generating Natural Answers by Incorporating Copying and Retrieving Mechanisms
in Sequence-to-Sequence Learning. Shizhu He1, Cao Liu1,2, Kang Liu1 and Ju 1,
http://www.nlpr.ia.ac.cn/cip/shizhuhe/articles/acl2017-coreqa.pdf

5

[4] jieba for tokenizing chinese https://github.com/fxsjy/jieba
[5] https://github.com/afader/oqa#wikianswers-corpus
[6] https://github.com/jxfeb/Generative QA

6

	Introduction
	Related work
	Approach
	Encoder
	Question Encoder
	Fact Encoder

	Decoder
	Answer words prediction
	State update
	Reading short-Memory Q and KB

	Experiments
	Data description
	Synthetic data
	Open Domain dataset

	Baseline model
	Evaluation

	Results
	Analysis
	Conclusion
	References

