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Abstract

In recent years,Visual Question Answering (VQA) (1) has become a prominent
research problem at the intersection of natural language processing and computer
vision. While historical approaches to visual question answering have relied on end-
to-end models trained using a corpus of images with associated {Question, Answer}
pairs (2), this paper analyzes an approach that performs answering in two stages.
Our approach consists of independently training an image understanding task and
a pure-language question answering task. This approach is motivated by a desire to
provide a greater degree of interpretability to VQA, by effectively translating an
image to natural language and then answering the question based on the translation,
rather than simply outputting an answer. The first stage is a captioning architecture
adapted from (7) that performs region-level captioning and consolidation of region
captions into dense captions. The second stage uses the Bi-Directional Attention
Flow (BiDAF) (4) model to perform question answering on the passage constructed
from these region descriptions. We limit the scope of our experiments to question-
answer pairs with one-word answers. Experiments show that the independent
question-answering model achieves a 60% exact-match accuracy, and the best
captioning architecture used in conjunction with this question-answering model
achieves an 11% exact-match accuracy on a test set of question-answer pairs
sampled from the Stanford Visual Genome (3) dataset.

1 Introduction

Visual Question Answering (VQA) is a task that relies on both a perceptually rich understanding
of dense visual scenes, and an understanding of how natural language is used to communicate the
relationships between objects in these scenes. In order to exploit this fact, we use the Stanford Visual
Genome Dataset (3), which was designed with the broad objective of grounding visual concepts
to language, thereby facilitating a deeper understanding of the visual world. The Visual Genome
dataset was designed to provide a multi-layered understanding of pictures. Unlike other datasets
such as Flickr30K and MS-COCO, Visual Genome offers complex information such as individual
region descriptions. In this paper, we leverage these region descriptions to implement and analyze
a multi-stage model for Visual Question Answering (VQA). Our VQA system takes as input an
image and a natural language question about the image, and produces a single-word natural language
answer as the output. Within the VQA system, there exist two stages. The first stage is a captioning
architecture adapted from (7) that takes an input image, splits the image into regions, captions each
region, and consolidates these captions into a dense caption.
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Our extraction of region bounding boxes effectively mimics the concept of attention because it allows
the captioning model to focus on a targeted area within an image that captures individual object
relationships rather than the entire source image. An example image containing a person sitting on a
couch, a dog on a rug, and an open door could have three individual region descriptions: {person
on couch, dog on rug, open door} that will each be individually captioned. After all of the region
captions are complied, they are then fed into the second stage of our system. The second stage uses
the Bi-Directional Attention Flow (BiDAF) (4) model to perform question answering on the passage
constructed from these region captions. This piece of the system takes as input a collection of phrases
that describe an image and a question and outputs a natural language response to the question.

We use a dataset that contains 10,000 images with 200,000 region bounding boxes and corresponding
labels from the Visual Genome dataset. Each of the images were paired with on average 30 {Question,
Answer} pairs. Training both the captioning model and the question-answering model independently
on such images, we are able to achieve reasonable accuracy. Specifically, the individual captioning
model reaches an accuracy of 60% on visual genome data (answering single word queries from region
descriptions). Furthermore, the captioning model produces captions that contain the correct answer
15% of the time. Chaining these two models together results in a one-guess question answering
accuracy of 11%, a two-guess accuracy of 14%, and a three-guess accuracy of the upper bound of
15%. While these results do not represent state-of-the-art accuracy in visual question answering,
the primary contribution is to show that, with more work in the area (in particular a more robust
captioning model), a two-stage approach to answering questions from visually rich images can be a
viable alternative to the end-to-end models that have been dominant in VQA to date.

2 Related Work

2.1 Captioning

Many end-to-end models have been proposed for VQA tasks, but few actually use the Visual Genome
dataset. We focus in particular on a recent paper (7) by Anderson et al. which does uses the Visual
Genome dataset for question answering and captioning. Both of the tasks are solved by Anderson
through end-to-end systems. We focus first on Anderson’s captioning system, which consists spatial
region embeddings and a two-layer LSTM. The first LSTM layers offers ‘soft’ top-down attention on
spatial region embeddings, weighting each spatial feature’s importance towards predicting the next
word in the caption at each time step. The second LSTM recieves this weighted sum as input, and
performs the actual language generation to produce a caption. Mathematically, we can represent the
input to the attention LSTM, x1, as in equation 1. Here h2t−1 is the output of the language LSTM, v̄
is the average spatial feature embedding, and Wt is the word-embedding of the previous time-step
(t− 1) predicted word (which serves as input in the current timestep t). The language LSTM layer
then has the following input, which consists of concatenating the attention LSTM output h1t with the
weighted region embeddings, as shown in equation 2.

x1 = [h2t−1 v̄ Wt] (1)

x2 = [h1t

K∑
i=1

wivi] (2)

Now we discuss several recent approaches to generating spatial embeddings of regions. Here, we
describe two. A first approach by Jin et al. (8) uses selective search to identify salient image
regions which are filtered with a classifier and then resized. The resulting images are encoded with
a convolutional neural network (CNN) wherein the CNN encoding serves as input to an image
captioning model with attention. A second approach proposed by Anderson uses Faster R-CNN in
conjunction with ResNet-101 to identify salient image regions. ResNet-101 performs object detection,
and faster R-CNN is used as region proposal network. Rather than using the final bounding boxes, an
intermediate convolutional layer of faster R-CNN is used. This layer is of depth K (for K different
embeddings, as in the above equations), and each embeeding is concatenated into a feature vector.
Although the second method is effective for producing high quality captions, for the purpose of
this project, we simplify this method by replacing Faster R-CNN with the pre-defined relationship
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bounding boxes detailed in the Visual Genome dataset. This serves the purpose of allowing us to
focus on the NLP components of the project, and reduce how dependent the project becomes on
state-of-the art vision and region proposal systems.

2.2 Question-Answering

In the second stage of the model designed to answer a query, Anderson proposes a well-known joint
multi-modal embedding of the question and image, followed by a prediction of regression scores over
a set of candidate answers. Within the network, a special case of highway networks is implemented
to learn non-linear transformations. This particular highway network uses gated hyperbolic tangent
activations which have shown an empirical advantage over traditional ReLU or tanh layers (7).

Because our approach to question-answering is done on dense captions (pure text) rather than directly
from images, we instead opt for the Bi-Directional Attention Flow (BiDAF) network (4). The BiDAF
network defines a hierarchical multi-stage architecture for modeling a context paragraph at variable
levels of specificity. The three main embedding types used in BiDAF are character level embeddings,
word level embeddings, and contextual embeddings. Then, these embeddings are fed into a sequence
of layers consisting of an attention flow layer, a modeling layer, and an output layer. At an abstract
level, the network uses bi-directional attention over the embeddings to find an appropriate context
representation to a given query (4).

3 Approach

3.1 Captioning Stage

Our approach to dense captioning is derived from the techniques used by Anderson et al. (7) on the
Visual Genome dataset. The Anderson model uses object bounding boxes and spatial embeddings
to produce captions with an average description length of 15 words per image. Because we wish
to more densely caption our input images, we implement a region-specific variation of this model.
The first phase of our model takes region proposals from Visual Genome (note that, in production
systems, this would be done through a region proposal algorithm such as selective search or R-CNN,
but the NLP focus of our project motivates the use of ground truths even at inference time).

Figure 1: The original raw image before region pre-processing is given on the left, while the extracted
region bounding boxes and associated captions are given on the right. Note that each caption is
padded to max length, and each region is compressed to a square size accepted by ResNet.

x = [ht−1 v et]
T (3)

yt = softmax(Wht + b) (4)

After regions are extracted, the second phase of our model uses ResNet to produce an embedding
of each region v. Let et denote the embedding of the word predicted at time t (e0 is simply the
embedding of the start token). Then, the input to our LSTM model at time t is given by equation 3.
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Figure 2: Various Captioning Models

The output probability distribution over the next word is given by equation 4. The most probable
word at time t is fed as the next word embedding (at time t+ 1) in greedy decoding at inference time.

At training time, we use teacher forcing and simply feed in the ground truth caption word at each
time. As shown in figure 2, we evaluate three specific architectures for captioning. All three
architectures use 300-dimensional word embeddings and 1000-dimensional image embeddings as
inputs to the LSTM. Furthermore, each LSTM hiden layer has 1000 units, and the fully connected
layer has 1000 × |V | + |V | parameters for the weight and bias terms, where |V | denotes the size
of the vocabulary. This is typically on the order of tens of thousands in our experiments. The
three architectures vary in the number of LSTM layers as well as the type of ResNet model used.
Specifically, the simplest architecture uses ResNet-18 and consistes of 1 hidden LSTM layer, the
medium complexity model uses ResNet-50 and consists of 2 hidden LSTM layers, and the most
complex model uses ResNet-101 and consists of 3 hidden LSTM layers.

3.2 Question Answering

Once we have completed the captioning stage, we reduce the visual question answering task into a
textual question answering task, similar to the SQuAD challenge. For a given image I , we aggregate
the full set RI = r1...rn of region descriptions generated in the captioning stage, and treat RI as
the context for a question-answer pair associated with the image. At this stage, we assume that the
answer to the posed question belongs to RI , meaning that the generated region descriptions are rich
enough to answer the question. We also limit the set of question-answer pairs to those where the
ground-truth answer is one word. Thus, our task consists of selecting‘ a word from the set RI to
answer the posed question. We use an open-source PyTorch implementation (9) of implementation of
BiDAF to learn the answers given a question and the region description context.

4 Experiments

4.1 Data

4.1.1 Captioning Model

From the the Visual Genome Dataset, we extracted a subset of raw images and their corresponding
region descriptions and bounding boxes. In total, we extracted 200,000 bounding box region pairs and
on average, there are about 200 region bounding boxes per raw input image. The specific partitioning
we used was a train:val:test ratio of 160,000:20,000:20,000, though for periodic validation we
randomly sampled the validation set by 10x for faster evaluation speed. All of the extraction,
preprocessing, and data subset generation code (from the Visual Genome dataset) was written by us.
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4.1.2 Question-Answering Model

To train the question-answering model, we consider the full dataset of region descriptions and
question-answer pairs on the 108,077 images and approximately 1.4 million question-answer pairs
in the dataset. After extracting the question-answer pairs with one word answers that are present in
the ground-truth region descriptions, we are left with 504,671 question-answer pairs, from which
we choose a random subset of 120,000 question-answer pairs that form our dataset. Finally, we
use a 100,000:20,000 train:val ratio. Note that the 20,000 region descriptions and their associated
question-answer pairs from the captioning model are also used here to test the multi-stage model.

4.2 Evaluation Methods

4.2.1 Captioning Model

To evaluate the captioning model, we compute BLEU scores of the predicted captions with respect to
reference translations on our validation set. We restrict the BLEU score computation to 1-grams and
2-grams, with equal weighting λ1 = 0.5, λ2 = 0.5. We also note that the BLEU scores represent an
intermediate evaluation of our multi-stage VQA model. As such, the evaluation is not necessarily
indicative of our ultimate results; our captioning model could successfully capture the salient features
of the image for the question-answering model without achieving a high BLEU score. Thus, using
generated captions on a test set, we compute (as an upper-bound for question-answering accuracy)
the proportion of captions for which the answer word truly exists in the caption. This serves as a
more clear metric for how effective the captions are at the task of answering the question.

4.2.2 Question-Answering Model

For this paper, we evaluate question answering using top-k accuracy. Specifically, we evaluate the
percent of questions for which the top guess is the correct answer (k = 1), the percentage for which
the correct answer is in the top two guesses (k = 2), and the correct answer is in the top three
guesses (k = 3). The model’s answer ŷ is said to be "correct" if it exactly matches one of the
ground-truth answers y; note that when k = 1, the metric is equivalent to exact-match accuracy. This
is the evaluation metric used in the Ranjay et. al baseline (3). In this paper, we do not consider the
commonly-used F1 measure, since we our limiting ourselves to one-word question answers.

4.3 Experimental Details

4.3.1 Captioning Model

In order to develop a robust captioning model, we first perform hyper-parameter tuning. We evaluated
the various architectures at different learning rates, specifically considering the 9 combinations associ-
ated with training each of the three architectures at each learning rate in the set {10−2, 10−3, 10−4}.
While training, we periodically computed the validation loss after every 50 iterations. we consider
a limited training regime of 3000 iterations, and tracked the total validation set loss over this span.
The validation loss was used to determine which model to deploy for wider training. While certain
functional elements were adapted from (7) and from assignments 4 and 5, we wrote the vast majority
of the code for the caption model ourselves (using torchvision.models for ResNet).

4.3.2 Question-Answering Model

We run BiDAF using character-level embeddings of size 10 and pre-trained GloVe embeddings
of size 100. As we only consider question-answer pairs with one-word answers, we make slight
modifications to the output layer of BiDAF. Instead of outputting probability distributions p1 and
p2 over the starting and ending indexes of the answer, we limit the output to a single probability
distribution p1.

One challenge of treating the region descriptions in the Visual Genome dataset as our ground-truth
context pagragraph in the question-answering model is that, unlike data in the SQuAD challenge, for
example, we are not given the index of the ground-truth answer in our context paragraph. Further,
because the Visual Genome region descriptions are rich and thorough, our dataset often contains
examples where the answer word appears frequently in the context paragraph. For example, a context
paragraph might contain the phrase "The grass is green, The girl’s shirt is green,...,There are green
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trees" and ask the question "What color are the trees?" In assigning the index of the answer, we
simply search the context paragraph and choose the index at which the answer word first appears.
This introduces challenges for training our question-answering model effectively, because we cannot
be certain that the assigned index is in fact the true index of the answer. In the example above, for
example, we would choose an answer index that is not associated with the true context of the answer,
causing the model to learn false associations. To address this issue, we clip the context paragraphs to
length 100 from an average length of 250. This strategy alleviates the issue by reducing the number
of times the answer word appears, but does not eliminate it entirely.

4.4 Results

(a) Captions Test Set BLEU Scores (b) Question Answering Accuracy

Figure 3: Quantitative Results on Captioning and Question Answering

4.4.1 Captioning Model

Figure 4: Validation Loss for Various Experiments

Figure 4 illustrates the validation loss graphs for the three models at different learning rates. We train
over a batch size of 32. Evidently, we see that the loss drop is the most desireable for the slowest
learning rate, as the other two are prone to stagnate sub-optimally. Furthermore, we see that the rate
of decline for the loss in the most complex model (3 LSTM layers with ResNet-101) is the fastest
and most consistent, and so this model will likely do the best to prevent overfitting on the training set.
Therefore, we select the 3-layer ResNet-101 model at a learning rate of 10−4 to train for an extended
period of time. After training this best model for 50,000 iterations, we evaluated the model on the test
set regions set aside in the original data partitioning. We evaluated the BLEU score of each caption
using the ground-truth captions as references. We noted in particular that the BLEU scores were very
low, as indicated in figure 3a. Specifically, we found that the mean BLEU score was 0.01, and the
lowest BLEU score bin [0, 0.5] contained the vast majority (92%) of the captions. Upon visually
inspecting the results, we discovered that this was because many of the captions were describing
different elements of the region than the ground truth. As a concrete example, consider the following
three region descriptions {the background sky is blue, the boat color is green, the ocean color is blue}.
The region crops associated with these three descriptions could be almost identical, each depicting a
boat on an ocean with a sky in the background. Despite the fact that each of the captions is a valid
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caption, only one will be the ground truth for a given region crop. This phenomenon results in low
BLEU scores on average. However, it also directly implies that the BLEU score is not necessarily an
accurate metric for the validity of a caption. Therefore, as explained in the subsequent section, we
use the metric of answer presence in the caption to evaluate the question-answering potential.

4.4.2 Question-Answering Model

We first run BiDAF given the Visual Genome ground-truth region descriptions to train the model over
20 epochs, achieving an exact-match accuracy of 60.33% on the validation set. We then evaluate
the multi-stage model, feeding the region descriptions generated by the captioning model on the test
set to the trained BiDAF model. First, we gauge how effective our captions could be at question-
answering. We find that 15.55% of the generated test captions have the answer word within them,
representing reasonable captioning accuracy, and providing us with an upper bound on the overall
possible accuracy of our multi-stage model. We then evaluate our multi-stage model using top-k
accuracy, and find exact-match scores of 11.3% (k = 1), 14.4% (k = 1), and 15.4% (k = 3), as
shown in figure 3b. Thus, the model is effective when allowed one prediction, and reaches the upper
accuracy bound when allowed three predictions.

5 Analysis

Figure 5: Qualitative Results for Image Captioning (Left) and Visual Question Answering (Right)

In qualitatively analyzing results, we found that the captioning model primarily produces captions
in the following three categories: (1) Low BLEU score and invalid, (2) Low BLEU score but valid,
and (3) high BLEU score and valid. It is clear that the majority of the captions fall into the first two
classes. However, it is difficult to isolate the percentage that fall into the first class vs. the second.
Examples are presented in figure 6. The top three examples are of perfectly predicted captions. These
clearly have high BLEU scores, and the captions accurately match the contents of the regions. The
next two examples are of captions in which the BLEU scores are low (near 0), but the captions may
be considered valid. For example, case 4 depicts a plane flying through a clear blue sky, but the
ground truth caption is “a plane in the air." Thus, when the model predicts “a clear blue sky" this
caption has a low BLEU score. Another example is of the two women playing soccer in a grassy
field. Once again, the predicted caption is valid but not close in terms of n-grams to the ground truth.
Finally, there are cases of poor captions that also have low BLEU scores. The final example in the left
column of figure 6 depicts this. Humans, upon looking at this picture, can infer that snow is on the
ground because of the skier’s arm and ski pole, but the model is absent this contextual intuition, and
so there is no way for it to distinguish the snow from a bright sky. Thus, qualitatively the captions
overall appear reasonable, even though this does not manifest quantitatively.
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In analyzing the results of the multi-stage VQA model, we find that it is adept at answering "What
color is...?" questions, as our captioning model is effective at extracting colors from the regions. We
achieve 25% accuracy – more than twice our overall accuracy – on this sub-category of question. We
also find that by considering one-word question-answer pairs, many images contain the same abstract
question. For example, the question "When was this photo taken?" with answer "Daytime" represents
nearly 10% of our test set, but the word "Daytime" is never represented in our test captions, and thus
we achieve 0% accuracy on this sub-category of question. This type of question illustrates one major
shortcoming of our multi-stage approach, which is that abstract questions such as the above break our
assumption that we can extract an answer from region descriptions. Though the time of day is clearly
a salient feature of any image, it is not well-captured by any one region and we would not necessarily
expect a more sophisticated image captioning model to produce a caption including that word. Thus,
even simple abstract questions pose a large challenge for the multi-stage model.

6 Conclusions

The conclusions which may be drawn from this project are several. First and foremost, we have
demonstrated that multi-stage VQA can be a viable technique (if improved upon) to perform question
answering on visually dense scenes. We argue that the most notable advantage of multi-stage VQA
over traditional end-to-end models is that it provides a greater degree of interpretability. Specifically,
the multi-stage model allows us to better analyze sources of error in question-answering by translating
an image to natural language before making a prediction, as opposed to an end-to-end model which
outputs an prediction, and is difficult to interpret if it makes a mistake. Meanwhile, the multi-stage
approach has its own set of challenges, including answering abstract questions that are not well-
defined by image regions or captions, as described above. Second, we have shown that, due to high
flexibility in image captioning, captions with low BLEU scores relative to ground truths can still
perform effectively in question-answering. Specifically, such captions do in fact contain the correct
answer word for a significant proportion of the questions in the dataset. Finally, we have shown that
within three guesses it is possible to reach the accuracy upper bound for the question answering stage,
and within one guess to reach a substantial fraction of this upper bound.

6.1 Captioning Model Future Work

There are two primary directions for future work that we could potentially explore. The first direction
involves the input data for the captioning model. We noticed that our current dataset contains regions
with over-extended captions. For instance, an image displaying a sidewalk made of bricks would be
accompanied by the caption “a sidewalk made of bricks next to a street." Using Visual Genome’s
relationship data (rather than just region descriptions) could solve this problem because it provides
two bounding boxes, one for each item mentioned in the relationship. We could use both of these
bounding boxes, passing them through a ResNet architecture to obtain a pair of encodings to feed
into later stages of the model. The second direction for improvement involves further segmenting the
regions. Rather than attempting to learn region-level embeddings directly, we could attempt instead
to learn region-based object-level embeddings and intelligently consolidate such embeddings into a
more intelligent region embedding. This would also likely improve captioning substantially.

6.1.1 Question-Answering Model Future Work

There are two directions for future work with our question-answering model. One aforementioned
challenge with our approach to the VQA task is that we inherently do not have ground-truth indices
of the answer in our context paragraphs at training time. Improving our naive pre-processing step
of choosing a the first index that matches the answer might lead to better overall performance. The
most effective – albeit labor-intensive and time consuming – solution to this issue would be manually
labeling the starting indices. Other computational strategies might involve using heuristics such as
matching term frequencies in the question to subsections of the context paragraph in order to more
accurately identify the correct indices. Secondly, the model could easily be extended to consider
question-answer pairs with multi-word answers by re-introducing the distribution p2 of the ending
index in the output layer of our BiDAF model. Pursuing this avenue may in fact help solve the
first mentioned issue, as multi-word answers are less likely to appear multiple times in the context
paragraph, while also making the overall task more difficult.
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7 Additional Information

Our mentor is Sahil Chopra.
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