
Compositional pre-training for neural semantic
parsing

Amir Ziai
Department of Computer Science

Stanford University
Stanford, CA

amirziai@stanford.edu

Abstract

Semantic parsing is the process of translating natural language utterances into
logical forms, which has many important applications such as question answering
and instruction following. Sequence-to-sequence models have been very successful
across many NLP tasks. However, a lack of task-specific prior knowledge can be
detrimental to the performance of these models. Prior work has used frameworks
for inducing grammars over the training examples, which capture conditional
independence properties that the model can leverage. Inspired by the recent success
stories such as BERT we set out to extend this augmentation framework into two
stages. The first stage is to pre-train using a corpus of augmented examples in
an unsupervised manner. The second stage is to fine-tune to a domain-specific
task. In addition, since the pre-training stage is separate from the training on the
main task we also expand the universe of possible augmentations without causing
catastrophic inference. We also propose a novel data augmentation strategy that
interchanges tokens that co-occur in similar contexts to produce new training
pairs. We demonstrate that the proposed two-stage framework is beneficial for
improving the parsing accuracy in a standard dataset called GeoQuery for the task
of generating logical forms from a set of questions about the US geography.

1 Introduction

Semantic parsing is the task of converting natural language into machine-executable logical forms.
Examples of this parsing include asking questions that are then converted to queries against a database,
generating code from natural language, converting natural language instructions to an instruction
set that can be followed by a system, and even converting natural language into Python [1]. These
logical forms can be captured using notions of formal semantics in linguistic such as λ-calculus and a
more compact version called lambda dependency-based compositional semantics or λ-DCS [2].

Traditionally this task has been tackled by a combination of heuristics and search to build up parsers
from large datasets of question-answer pairs [3] or from text that is paired with knowledge base
information [4]. However, we the advent of the sequence-to-sequence [5] architecture, the majority
of the research has shifted towards using this framework.

Many sequence-to-sequence use cases involve converting a sequence of natural language into another
sequence of natural language. Semantic parsing is different in that the decoded sequence need to
be constrained by what would constitute a valid logical form. This additional challenge adds extra
complexity to semantic parsing systems. Similar to more conventional sequence-to-sequence tasks
semantic parsing also suffers from the problem that one source sentence can have multiple valid
logical forms which introduces a wrinkle in evaluation.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Related work

The approach used in this work is a continuation of the work by Jia et al. [6] where the authors
proposed a sequence-to-sequence model with an attention-based copying mechanism. This supervised
approach leverages the flexibility of of the encoder-decoder architecture and the authors demonstrate
that the model can learn very accurate parsers across three standard semantic parsing datasets. The
augmentation strategy used in this work allows for injecting prior knowledge which improve the
generalization power of the model.

One disadvantage of this approach is that the decoder outputs are considered unstructured and can
lead to invalid logical forms. Krishnamurthy et al. propose to overcome this problem by imposing a
grammar on the decoder that only generates well-typed logical forms [7]. However, this approach
increases the complexity of the system, which was unwarranted in our experiments and most of the
results produced by the model in our experiments were valid logical forms (with sufficient training).

Moreover, building annotated semantic parsing datasets is highly labor-intensive and parsers built
for one domain do not necessarily transfer across domains. Fan et al. propose a multi-task setup
and demonstrate that training using this setup can improve the accuracy in domains with smaller
labeled datasets [8]. This approach is aligned with one of the main contributions in our research.
Our proposed framework allows for pre-training the model in an unsupervied manner with data from
multiple tasks that enables transfer learning.

3 Approach

A sequence-to-sequence model with an attention-based copying mechanism is used to learn logical
forms from natural language utterances. Moreover, a novel data augmentation framework is used for
injecting prior knowledge by inducing a synchronous context-free grammar. This novel framework,
first proposed in [6], is called data recombination.

Figure 1: Seq-2-seq architecture with an attention-based copying mechanism

As depicted in Figure 1, the encoder takes the natural language utterances as a sequence of m tokens.
The first step is to lookup the embedding vector for the token and then to pass it through a bidirectional
LSTM. The hidden states for the forward and backward RNNs are generated and the last hidden state
is used as the initial hidden state for the decoder. At train time we run the natural language utterance
through the encoder, initialize the decoder using the last hidden states, and then use teacher forcing
to produce an output at each of the n steps of the decoder while using the actual token for the next
step. The objective function we’re optimizing at each Stochastic Gradient Descent (SGD) step is the
standard negative log-likelihood computed for the softmax probability of the true token yt summed
over the sequence. The per example loss is summed over all of the training examples N to produce
the total loss

−
N∑
i=1

n∑
t=1

log p[ŷt = yt] (1)

2

Three strategies are used for inducing a grammar over the original examples from each
of the training datasets. The first strategy simply abstracts entities in the examples with
their type. Assuming that each entity has a corresponding type the authors generate two
rules. For instance the example with input “what states border Texas?” and output
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))) results in
the following two recombinant rules:

• ROOT −> (what s t a t e s b o r d e r S t a t e I d ? , answer (NV, s t a t e (V0) ,
n e x t _ t o (V0 , NV) , c o n s t (V0 , s t a t i d (S t a t e I d))

• StateID -> (“texas”, texas)

The second strategy abstracts whole phrases and adds one or two rules to the output grammar. The
first of these two rules looks for matches between input and the output and replaces both of them
with the type of the entity. Afterwards, if the entire output expression is of a particular types then a
new rule is generated of the form type -> (input, output). Finally a k-concatenation strategy
is used where k >= 2 is a parameter and simply creates a new rule that concatenates the sequence k
times. The authors argue that the concatenation strategy has the effect of creating harder examples
for the RNN to attend to, which has been shown to improve generalization.

3.1 Co-occurrence augmentation

We propose a novel augmentation strategy to be used in addition to the aforementioned strategies. This
augmentation relies on the intuition that tokens which appear in similar contexts are interchangeable
in both the source as well as the target sequences. For instance consider the following pair of natural
language and logical form:

• What is the capital of Alaska?
• _answer(NV,(_capital(V0),_loc(V0,NV),_const(V0,_stateid(alaska))))

We can replace Alaska with any of the other 49 states in the US and get a valid pair. Our strategy
for computing these equivalences is to look at source sentences with an equal number of tokens
that only differ in a single token. These tokens are then linked together as we observe a minimum
number of co-occurrences in the corpus. For example alaska co-occurs with the following tokens:
{alabama, arizona, arkansas, california, ...}, which include over half of the US states.

This augmentation strategy also captures semantically similar tokens and allows for
teaching these semantic invariances to the model. Consider the source sentence
what is the highest point in ohio. An example of an augmented semtence based on this
sentence is what is the highest elevation in oklahoma.

It should be noted that the co-occurrence strategy fails in some cases. For example the source sentence
"list the states ?" may produce the augmented sentence "list the california ?". As the
tokens states and california have been linked together due to co-occurrence in similar contexts.
We have allowed for these cases to be produced so long as the generated logical form is valid. Our
hypothesis is that the benefit of having the model generalize better by seeing correctly augmented
examples outweigh the cost of producing semantically incorrect pairs.

3.2 Pre-train and fine-tune

There’s diminishing returns associated with data recombination in the original formulation. In
particular, overusing data recombination can come at the cost of learning the actual task. We
hypothesize that pre-training using recombinant data and subsequently fine-tuning the actual task can
overcome this issue.

This framework is inspired by recent success stories such as BERT [9]. To validate this hypothesis
we start by simply breaking the original paper’s single-stage training approach to the aforementioned
two-stage approach. However, we only use recombinant examples for the pre-train stage and use
the original, non-augmented training examples for fine-tuning. This framework allows for a high
level of flexibility on the data, augmentation strategies, and objective functions that can be used for
each stage as summarized in Table 1. For instance we can leverage unlabeled data and train the

3

encoder and decoder as independent Language Models (LMs) as in [10]. In addition, we can use less
precise recombinant strategies such as the co-occurrence strategy that would’ve been detrimental in
the previous formulation.

Table 1: Data, augmentation, and objective functions used in the two stages of the proposed framework

Pre-train Fine-tune

Leverage unlabeled data Yes No
Leverage other tasks Yes No
Data recombination used Yes No

The baseline for this work is the parsing and token accuracy reported for three standard semantic
parsing datasets in [6]. Parsing accuracy is defined as the proportion of the predicted logical forms
that exactly match the true logical form [11]. It is possible that the same question could be captured by
multiple valid logical forms and therefore a strict string match may be overly strict. Token accuracy
is the proportion of the tokens in the true logical form that were present in the predicted sequence.
We use parsing accuracy as a secondary metric as the model can learn to game it by producing
more tokens. However, token accuracy is a useful metric for models that results in a similar parsing
accuracy as well as a proxy for equally valid logical forms.

The original contribution of this work is the co-occurrence strategy as well as the proposed
framework for pre-training and later fine-tuning without the recombinant strategies resulting in
catastorphic interference or forgetting [12]. The code for the original paper was written in
Theano and the code along with a number of utilities for preparing and evaluating the datasets
and the experiments are all available in https://worksheets.codalab.org/worksheets/
0x50757a37779b485f89012e4ba03b6f4f/. We have re-implemented the architecture and the
two-stage framework in PyTorch and have used these utilities for preparation and evaluation. We
have also used the OpenNMT library for experimenting with a variety of architectures such as
Transformers. This library is available at http://opennmt.net/OpenNMT-py/.

4 Experiments

4.1 Data

We used the GeoQuery dataset which is available at http://www.cs.utexas.edu/users/ml/geo.
html. This dataset consists of a set of questions about US geography facts and the corresponding
Prolog query which represents the logical form. We use 600 examples for training and 280 examples
for testing. The task is to produce the logical form given the question.

4.2 Evaluation method

Parsing accuracy (described in an earlier section) is used for evaluation.

4.3 Details

For the first experiment we explored the co-occurrence augmentation strategy as well as the two-
stage training approach. Experiments are conducted with an encoder-decoder architecture with a
bidirectional LSTM encoder with 256 hidden units and an LSTM decoder with the same number of
hidden units. We have used a similar attention copy mechanism that was employed in [6], a learning
rate of 0.001, word embedding size of 64, and 1,000 epochs of training. The original implementation
in Theano used Stochastic Gradient Descent (SGD). We are using an Adam optimizer and using
mini-batches of size 256 for training. Training the model in mini-batches resulted in significant
speedups and allowed us to conduct many more experiments. Finally we have appended the training
data with an equal number of augmented examples in the cases that augmentation was used.

After establishing the best combination of augmentation strategies we conducted hyper-parameter
search to explore the effects of the embedding size, RNN hidden size, and the learning rate on the
parsing accuracy.

4

https://worksheets.codalab.org/worksheets/0x50757a37779b485f89012e4ba03b6f4f/
https://worksheets.codalab.org/worksheets/0x50757a37779b485f89012e4ba03b6f4f/
http://opennmt.net/OpenNMT-py/
http://www.cs.utexas.edu/users/ml/geo.html
http://www.cs.utexas.edu/users/ml/geo.html

Each experiment took an average of about 30 minutes to run on an AWS EC2 instance with 64 cores
and 256GB of memory. We ran up to 32 experiments in parallel.

4.4 Results

Table 2 summarizes the sequence and token accuracy for the explored augmentation and pre-training
strategies.

Table 2: Augmentation and pre-training experiments

Augmentation Pre-train Sequence accuracy Token Accuracy

nesting, entity, concat Yes 74.3 87.8
nesting, entity, concat No 73.6 88.2
nesting, entity, concat, co-occurrence Yes 66.1 87.3
- Yes 62.1 81.6
- No 58.6 81.6
nesting, entity, concat, co-occurrence No 56.1 81.7
co-occurrence Yes 55.4 79.8
co-occurrence No 51.7 80.7

The results suggest that pre-training can be marginally beneficial to sequence accuracy. However, the
co-occurrence augmentation is leading to poorer results for this combination of hyper-parameters.
One possible explanation is that this lower precision augmentation, by not enforcing a tight coupling
between source and target sequences, is leading the model astray by producing semantically incorrect
pairs that draw the wrong association between incompatible pairs which just happened to co-occur.
We will see examples of this in the upcoming analysis section.

To gain more insight into the importance of the hyper-parameters we conducted search over the
learning rate, word embedding size, and RNN hidden size. The results are summarized in Table 3.

Table 3: Hyper-parameter search for best augmentation and pre-train combination

Word embedding size 32 64 128
Learning rate RNN hidden size

0.001 64 0.0 2.1 11.1
128 24.6 32.1 63.2
256 70.4 74.3 71.4

0.010 64 40.7 45.4 36.1
128 68.9 68.2 59.6
256 66.1 55.0 69.6

The hyper-parameter search results suggest that a larger hidden size for the recurrent units is more
beneficial while increasing the size of the embedding size has diminishing returns. This makes
intuitive sense as the vocabulary size for this problem is very small and increasing the embedding
size too much results in overparameterization.

We briefly experimented with using Transformers [13] for both the encoder and the decoder but did
not manage to reproduce the same level of parsing accuracy and abandoned that line of investigation.

5 Analysis

In this section we analyze the best-performing model from the previous section. This model uses
pre-training and employs all augmentation strategies except for co-occurrence. The model is trained
with learning rate of 0.001, word embedding size of 64, and RNN hidden size of 256.

5

A useful metric for comparing the predicted and true sequences is the Intersection over Union (IoU)
of the unique tokens in the two sequences:

IoU =
True ∩ Predicted
True ∪ Predicted

(2)

where True is the set of non-punctuation tokens in the true logical form and Predicted is the same set
in the predicted sequence.

This metric focuses on how well the system is producing the correct tokens and disregards the order
of the produced tokens and the correct nesting. For a correct parsing we get a value of 1, however an
incorrect parsing can still get an IoU of 1 when the order or nesting is incorrect. Figure 2 shows the
distribution of this metric for the incorrect results.

Figure 2: Distribution of the error attributable to the predicted tokens

In the vast majority of the cases the model is not even producing the correct tokens. Most of these
are cases where the model is confusing similar predicates such as cities, states, mountains, or rivers.
For example instead of generating _stateid(utah) the model generates _cityid(utah). These
mistakes results in the generation of incorrect logical forms.

A smaller proportion of the errors made by the model can be attributed to the logical form complexity.
Figure 3 depicts the parsing accuracy against the number of open parentheses used in the true logical
form as a measure of the logical form complexity.

Figure 3: Effect of the logical form complexity on parsing accuracy

6

Logical forms with a larger number of opening parentheses tend to be more complex and have deeper
nesting which make them harder to predict correctly. We can see that the model has not been able to
correctly produce a logical form with more than 10 opening parentheses. To gain more insight into
this process let’s visualize the attention layer for a correctly predicted example in Figure 4.

Figure 4: Attention weights for a correctly predicted example

We can see that the majority of the attention tends to be focused on a small subset of tokens in the
source sentence. This lack of alignment makes it difficult for the model to switch attention between
tokens in deeply nested logical forms as most of the instances in the training example do not take that
form and look more similar to the example in Figure 4.

6 Future work

We showed that the two-stage framework proposed in this work can improve the parsing accuracy for
a semantic parsing task. We need to extend the experiments conducted in this work to more datasets
in order to establish a more definitive answer to whether these gains are persistent and significant
beyond the GeoQuery dataset. We also need to explore other strategies for pre-training. In this work
we used the same objective function for pre-training and fine-tuning. However, we will experiment
with different strategies such as pre-training the decoder and encoder separately as language models.
Especially for the decoder this can have the effect of teaching the model to produce valid logical
forms using a large corpus.

The co-occurrence strategy proposed in this work did not prove to be promising in its current form.
As we hypothesized earlier this may be due to the fact that co-occurring tokens may be linked together
by appearing in similar contexts. We strategy to overcome this problem is to restrict the augmentation
to cases that do not affect any of the predicates in the logical form. This higher precision strategy
may reduce the production of semantically incorrect natural language utterances while teaching the
model about semantic invariances.

7 Additional information

Mentor: Robin Jia from the Stanford AI lab

References
[1] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code

generation. arXiv preprint arXiv:1704.01696, 2017.

[2] Percy Liang. Lambda dependency-based compositional semantics. arXiv preprint
arXiv:1309.4408, 2013.

7

[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1533–1544, 2013.

[4] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1415–1425, 2014.

[5] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[6] Robin Jia and Percy Liang. Data recombination for neural semantic parsing. arXiv preprint
arXiv:1606.03622, 2016.

[7] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural semantic parsing with type
constraints for semi-structured tables. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 1516–1526, 2017.

[8] Xing Fan, Emilio Monti, Lambert Mathias, and Markus Dreyer. Transfer learning for neural
semantic parsing. arXiv preprint arXiv:1706.04326, 2017.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[10] Prajit Ramachandran, Peter J Liu, and Quoc V Le. Unsupervised pretraining for sequence to
sequence learning. arXiv preprint arXiv:1611.02683, 2016.

[11] Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional
semantics. Computational Linguistics, 39(2):389–446, 2013.

[12] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

8

	Introduction
	Related work
	Approach
	Co-occurrence augmentation
	Pre-train and fine-tune

	Experiments
	Data
	Evaluation method
	Details
	Results

	Analysis
	Future work
	Additional information

