
MeltingpotQA: Multi-hop Question Answering

Nathan Dass
Department of Computer Science

Stanford University
ndass@cs.stanford.edu

Saelig Khattar
Department of Computer Science

Stanford University
saelig@cs.stanford.edu

Ankit Mathur
Department of Computer Science

Stanford University
ankit96@stanford.edu

Abstract

MeltingpotQA is a question answering model that works on the HotpotQA dataset.
HotpotQA is a question answering dataset featuring natural, multi-hop questions,
with strong supervision for supporting facts to enable more explainable question
answering systems [11]. We advance the baseline model [1] to more appropriately
tackle the task of multi-document question answering. In particular, we focus on
the problem of relevant paragraph selection, where the model has to decide which
documents to use for answering questions. We experiment with using document
embeddings and propose architectural changes to the model to take advantage of
the supervision signal provided in the HotpotQA dataset. Overall, our final model
achieves an F1 of 62.14 as compared to the baseline F1 of 54.93. This score should
go even higher once we use our approaches of paragraph selection with the cleaned
data.

1 Introduction

One fundamental goal of natural language processing systems is to be able to function as humans do in
understanding information in natural language and using it for a given task. One such fundamental task
is that of reading comprehension. Reading comprehension involves reading a variety of documents
and being able to answer a question based on these readings. These questions might require several
pieces of information for context to be synthesized to generate a version of the question that can be
directly answered given the facts. Alternatively, multiple facts might combine to fully answer the
question.

Unfortunately, many current question answering tasks do not approximate this and instead focus
on the simpler case where a single sentence answers the question. HotpotQA [11] aims to provide
a dataset on which researchers can innovate on models which aim to solve this task. The baseline
model provided with this is the model introduced in [1].

In this work, we introduce MeltingpotQA, an improvement to the baseline model, in which we
introduce some new techniques aimed at improving the performance on the HotpotQA task. We in-
vestigate more effective preprocessing techniques for the data which result in noticeable performance
improvements on the dataset. We also evaluate performance while using document embeddings,
both out of the box with doc2vec [5] embeddings and by training custom document embedding,
using supervision from the data provided in the HotpotQA dataset. We investigated a variety of
architectures for this supervised document embedding fine tuning as well.

2 Approach

We start with the baseline model (and code) described in the HotpotQA paper [11], which is built
on the architecture described in [1]. It has a few additions, including character-level models, self-
attention, bi-attention, and a 3-way classifier for answering yes/no questions.

2.1 Document Embeddings

When looking through the modeling architecture, we noticed that the initial representations of the
question and the context are built from word and character embeddings. While this is probably fine
for the question, this seemed like an issue for the context. In the distractor setting, the context is 10
paragraphs and the model needs to extract the relevant information for answering the question from
all of these 10 paragraphs, which seems difficult to gather from a long sequence of word embeddings
and an even longer sequence of character embeddings. The problem gets much worse when we
extend to the full wiki setting when the model is presented with the first paragraph of all Wikipedia
articles. In the full wiki setting, not only would it be hard to extract the necessary signal, but we
would very likely run into out of memory issues when trying to allocate enough space for all of the
character embeddings. This also seems impractical — to answer a single question, the model would
have to comb through the first paragraph of all Wikipedia articles.

For these reasons, we chose to focus on the problem of relevant paragraph selection. Due to time
constraints, we focus on the distractor setting in this project, but our work can be extended to the
full wiki setting (and we expect to see larger gains using our approaches in the full wiki setting).
As a first step, we propose adding paragraph-level embeddings to the model with the hope that it
would provide a stronger, higher level representation of the question and each of the paragraphs in the
context. More concretely, we first pretrain a gensim doc2vec model on each question and paragraph
in the context in the training data [5]. We wrote a Pytorch wrapper around this module and a script
to precompute these embeddings to speed up performance. Then, when training the full model, we
look up the paragraph embedding for the question and the paragraphs in the context and concatenate
these embeddings to the word and character embeddings for the question and the context. The rest
of the architecture remains the same, but we are just adding in an extra source of information in the
beginning of the model. Since the rest of the model builds off of the initial representations passed in,
we expect that the addition of paragraph-level embeddings will increase performance. We experiment
with 50, 150, and 300 dimensional document embeddings.

2.2 Supervised Document Embeddings

While individual paragraph and question document embeddings can help capture higher level signal,
they do not directly capture the relevance between the paragraphs and questions themselves. To
capture this relevance, it would be helpful to have some sort of scoring function that could provide a
measure of paragraph-question relevance or some way to tune the paragraph embedding to include
information about question relevance. Further, we notice that the HotpotQA dataset has supervision
signal that the baseline model does not take advantage of. Specifically, for each question, the dataset
has the paragraph titles that correspond to the supporting facts of each question. Since we are given
that for each question, only two paragraphs out of the ten are relevant, we can extract the exact
paragraphs that are relevant to each question. Then, we can provide a binary label to each question-
paragraph pair, i.e pairs that have relevant paragraphs are assigned to the positive class and pairs with
irrelevant paragraphs are assigned to the negative class. Now, we frame this as standard supervised
binary classification problem, where we take in a question and paragraph document embedding as
input and predict whether they are relevant or not.

To do this, we develop a neural network that provides this scoring function and learns a modified
paragraph embedding in the process. We propose a network with 4 hidden dense layers that takes
in a concatenated paragraph and question embedding and predicts a binary label. The last hidden
layer outputs a vector with the same dimension as the question and paragraph document embeddings
— this is our new "supervised document embedding" that will feed into the full model. The output
layer of our network takes this supervised document embedding and maps it to a two dimensional
vector containing the scores for each class (we compute scores for both classes since it is easier to
use incorporate class weights in PyTorch loss functions). We then apply a softmax layer to obtain the
probabilities of each class. Our final architecture for this supervision task is shown in 1. We then

2

Figure 1: Architecture to learn supervised document embeddings for context paragraphs.

take the "supervised" embedding from this model and feed into the full model, whose architecture is
depicted in Figure 2.

3 Related Work

3.1 Question Answering Datasets

There are a wide variety of datasets that target the task of answering questions. All of them define
different tasks, so in this section we review the varying tasks and what makes the HotpotQA task
special.

SQuAD [6] is the most popular and most cited of the question answering tasks that we were able to
identify. SQuAD involves answering questions with a single paragraph of context. The answer to the
question is located directly in a given sentence of the paragraph. Unfortunately, solutions designed
for this dataset often fail to generalize to different settings where more complex questions and more
varied contexts can be synthesized to answer questions.

TriviaQA [4] and SearchQA [3] are datasets that identify more documents, given a question answer
pair. This makes the problem more challenging, but it does not address a the fundamental limitation
of locality - the answer is usually attainable by looking over a relatively small span in the data.
Therefore, models targeting these datasets do not require or learn complex reasoning over multiple
paragraphs.

Therefore, the dataset that addresses the more complex tasks should involve multi-hop reasoning
over large amounts of context. This concept is not new, as QAngaroo [9] and ComplexWebQuestions
[7] have datasets with these. However, the target application of these datasets was knowledge graph
systems. As a result, they are not really about the natural language setting. HotpotQA [11] is a natural
language dataset that contains question-answer pairs, where the answer is derived from a relatively
large context and the questions require being able to synthesize context from multiple paragraphs. As
such, we felt this is a task more closely approaching how we would expect a reasonable human to
answer questions given a certain amount of context. It more closesly simulates the concept of reading
comprehension.

3

Figure 2: MeltingpotQA Model Architecture, built upon [11]. Takes in supervised document
embeddings from 1.

3.2 Question Answering Models

The current state of the art model for the SQuAD1.1 dataset is the Transformer-based BERT [2]
model released by Google during the course of this class. This model is actually a language model,
but it can be fine-tuned to the task of question answering by training a start vector and an end vector,
which are then used to compute the likelihood of which words correspond to the start and end tokens
for the response. While this might work for relatively fixed size contexts where the answer is a single
sentence, it is unlikely to be able to synthesize information across contexts or utilize information from
other contexts to find relevant spans. As such, BERT does not work out of the box for the HototQA
dataset.

Other state of the art models on other tasks like WikiQA [10] include models like those proposed
by [8] Tay et al, who propose HyperQA, which uses a pairwise ranking objective which models the
relationship between question and answer embeddings in hypterbolic space instead of Euclidean
space. This paper focuses on the performance over huge datasats, but it does not have any specific
mechanisms that might help generalize to a multi-hop question answering use case.

The state of the art model on the TriviaQA [4] dataset is more likely to be relevant to the HotpotQA
dataset. That model [1] uses the S-norm to target the task of reading comprehension over large single
document contexts. As such, the authors of the HotpotQA paper implement that model with some
slight alterations in order to apply to the multi-document context.

4

4 Experiments

4.1 Data and evaluation methods

The dataset we are using is HotpotQA [11] for multi-hop questioning and answering. This dataset
contains a diverse set of 113k Wikipedia-based question-answer pairs that require reasoning over
multiple documents. We evaluate our performance using joint exact-match (EM) and F1 over
supporting facts and questions. Joint exact-match is 1 only if both answers and supporting facts get
an exact match, and 0 otherwise.

4.2 Experiment Details

4.2.1 Document Embedding Experiments

Our first approach involved incorporating document embeddings into the baseline architecture [11].
We separately trained 50, 150, and 300 dimensional document embeddings using a doc2vec model [5]
over all the question and context paragraphs in the training set, and then passed these embeddings into
the full model. In our first experiment, for each question, we average all of the paragraph embeddings
together and repeat it to match the shape of the word and character embeddings. We use the published
learning rate of 0.1 and decrease the learning rate by a factor of 2 whenever the dev F1 decreases
between consecutive evaluations.

However, by averaging all of the paragraph embeddings together we likely lose the signal gained
by the paragraph embeddings themselves. Thus, to correct this problem, we attach the paragraph
embedding for the paragraph the word belongs to in our next experiment.

Both of these experiments took about 12 hours to train.

4.2.2 Supervised Document Embedding Experiments

For our supervised document embeddings model, we tested various different architectures for the 150
dimensional context paragraph and question embeddings. We vary the number of hidden dense layers
as well as the number of units in each of these layers. We optimize our model over cross entropy loss.
Our best model was a series of 4 hidden layers, with 500, 300, 200, and 150 units respectively. Note
the last hidden layer must have the same number of units as the dimension of the context paragraph
and question embeddings. We used a weighted cross entropy loss, assigning a weight of 10 to the
positive class (relevant) and a weight of 1 to the negative class (irrelevant). We used a learning rate of
0.01.

Training the supervised model was fairly quick, usually taking around 20 to 30 minutes.

We then used the supervised document embeddings learned from this model, and fed them into the
full architecture.

4.2.3 Other Experiments

We also conducted hyperparameter tuning on patience, and changed the way we preprocessed data.

To speed up the hyperparameter tuning process, we first downsampled the training and validation set
to 10% of all the data. We then tested various different values for patience, i.e the number of epochs
that don’t result in F1 score improvement that we should wait for before halving the learning rate, on
this downsampled data. Since we downsampled the validation set, we couldn’t compare performance
directly with full model performance, but we could still compare among the experiments themselves.
We determined that the best performance resulted from a patience of 7, so we used this parameter on
training the full model and compared performance with the baseline.

In addition, we noticed some oddities in the preprocessing script that came with the baseline model
(see section 5). After changing these, we ran the baseline model on the updated preprocessed data
(with patience 7).

5

4.3 Results

Table 1: Results on document embeddings and baseline improvements

F1 EM
Baseline 54.93 40.90
Baseline, patience=7 56.38 42.26
Baseline, clean data, patience=7 62.14 47.37
Doc2Vec50 55.03 41.08
Doc2Vec150 55.44 41.15
Doc2Vec300 55.16 41.36

Table 2: Results on supervised document embeddings*

F1 EM
Baseline, step 2400 40.04 28.71
Supervised document embeddings, step 2400 39.25 28.74

*Since with supervised document embeddings our model takes 15-20 hours to train, we were unable
to get the final results in time for the paper. We will have these numbers for the poster, however.

5 Analysis

5.1 Preprocessing

We were initially very surprised by the results that we obtained from adding our document embeddings,
both with the off the shelf unsupervised doc2vec model approach and with our supervised document
embedding fine-tuning approach. Since the document embeddings should be providing a broader
signal of the paragraph as a whole and the fine-tuned embeddings should be providing an additional
signal of how relevant a paragraph is to a question, we expected the improvement in performance to
be higher.

To analyze our results, we started by looking through the data. We immediately noticed something
very odd. The preprocessed data had a lot of non-random out of vocab tokens throughout the context
feature. Below is part of an example of a tokenized context paragraph:

<t> Greisen – –OOV– – Kuzmin limit –OOV– The Greisen – –OOV– – Kuzmin limit
(GZK limit) is a theoretical upper limit on the energy of cosmic rays (
high energy charged particles from space) coming from " distant " sources .
–OOV– The limit is , or about 8 –OOV– joules . –OOV– The limit is set by
slowing - interactions of cosmic ray protons with the microwave background
radiation over long distances (–OOV– million light - years) .

We noticed that there is always an out of vocab token after the title ends and also at the start of every
sentence in the actual context paragraph, which seemed like a big issue. Since the additional tokens
were actual out of vocab tokens, the model would not know the difference between an actual out
of vocab token and what seemed to be a more structured out of vocab token. Digging through the
preprocessing code, we noticed that the title was surrounded with <t> and </t> tokens, but </t>
was not a token in the vocabulary, so it was mapped to out of vocab. Additionally, most (but not all)
of the sentences in the context paragraph had an extra token that was not a word at the start of the
sentence and was also mapped to out of vocab. This turns into an issue because these extra out of
vocab tokens are not meant to be out of vocab tokens and can provide actual signal to the model, but
then there are actual out of vocab tokens that do not provide much signal to the model. To fix this,
we changed the preprocessing code to use tokens that were actually in the vocab and add sentence

6

boundaries (a common preprocessing step in NLP models). Below is the same paragraph as above
with our new preprocessing:

<title> Greisen – –OOV– – Kuzmin limit <p> The Greisen – –OOV– – Kuzmin
limit (GZK limit) is a theoretical upper limit on the energy of cosmic
rays (high energy charged particles from space) coming from " distant
" sources . <p> The limit is , or about 8 –OOV– joules . <p> The limit
is set by slowing - interactions of cosmic ray protons with the microwave
background radiation over long distances (–OOV– million light - years) .

Now, out of vocab tokens actually imply what they are meant to imply and we can learn what the
<title> and <p> tokens actually mean (start of title and start of sentence, respectively). Not only
would this make the baseline better, but we also realized that this probably had a big impact on the
performance of our document embedding experiments. We noted that the extra out of vocab tokens
were only manifsted in the preprocessed data, but not in the raw data. Since we trained our initial
doc2vec models on the raw data, the doc2vec models never saw the additional out of vocab tokens.
Then, we try to obtain an embedding for what we think is the same paragraph but now has a bunch
of extra out of vocab tokens. Since the doc2vec model has not been exposed to the out of vocab
tokens, the model will give a different paragraph embedding from what we are expecting to get. The
extra out of vocab tokens are essentially adding extra noise to the paragraph that we confirmed makes
the embeddings actually obtained different from we expect them to be. Now, we have a paragraph
embedding that is misrepresenting the actual paragraph and could even be adding additional noise to
the model.

5.1.1 Impact on modeling performance

We discovered this bug very late into the project, but to confirm our suspicions with the time that
was remaining, we reran the baseline model with a patience of 7 and only changed whether or not
the model was trained and evaluated on the original preprocessed data or the cleaned preprocessed
data and saw that the difference in metrics was very big. The best dev F1 of the model trained on
the original preprocessed data is 56.38 and the EM at the same checkpoint is 42.08. On the other
hand, the best dev F1 of the model trained on the cleaned preprocessed data is 62.14 and the EM at
the same checkpoint is 47.37. Clearly, cleaning the data that is used has a big impact on the model
with minimal tuning, so we are confident that redoing our document embedding experiments from
scratch with the cleaned data will give better results.

5.2 Supervised Document Embeddings

We considered a variety of network architectures for the supervised document embeddings. The input
to our model was concatenated versions of the question and document vectors for a given question,
document pair. Conceptually, we want to learn a transform over the vector space that maps a pair of
vectors to a new location in the space which is closer to the original question. We want this because
we want document embeddings that are relevant to the question to be nearer, so the rest of the network
can use this information to weight the likelihood that the answer lies in that document.

We made some progress on this, though there remain many experiments worth trying. We ruled
out convolutional network architectures because they are best for local relationships between input
dimensions, but that doesn’t really make sense in context of this task - our input is a concatenated
vector, and local information encodes nothing about the relationship between the two vectors. We
experimented with fully connected layers because they more closely resemble the concept we wanted
our model to learn. Fully connected layers learn nonlinear transform functions over the input - we
wanted to learn such a transform that transforms the document vector into the question embedding
space.

We experimented with a single layer model with 500 units and a deeper, wider model with 4 layers.
Unfortunately, the best F1 score we were able to obtain on this model was around 0.33. We made sure
to balance the training set (there were around 80 % negative examples and 20 % positive examples).
To us, this represented a relative lack of improvement over other methods. As we’ve highlighted
in previous parts of this paper, we believe a large portion of this to be a result of the OOV tokens
messing up the dimensionality - our model learned about documents in a totally different vector
space, and the OOV tokens inserted themselves at various dimensions.

7

We have several other ideas about how to better train this model - these include autoregressive
approaches or not freezing the parameters learned when plugging the supervised document embedding
transformation into the full model, since it is possible that our model was simply learning to optimize
for the binary score. We also think a loss function that computes the distance between the question
vector and the new document embedding vector might be better. A different loss function like max
margin might also be effective, where we are measuring whether the relevance score of the relevant
documents given the question is higher than the irrelevant paragraphs. Potentially, all of these options
could intuitively have made a big difference, and if we had more time, we would definitely have tried
these.

6 Conclusion

In this work, we introduced the idea of trying to use supervised document embeddings to understand
how these embeddings can help inform the model in choosing which documents to focus on. We
started with using doc2vec to pretrain document embeddings for the questions and paragraphs, and,
subsequently, we designed a fine-tuning neural network that was supervised with the paragraphs that
was trained to predict the relevance of a paragraph to a given question. We also investigated how data
was preprocessed in the baseline, and made changes (along with hyperparameter tuning) that resulted
in a F1 score that exceeded that of the baseline by more than 7 points. While we only achieved
modest improvements with document embeddings, we believe that they could be more impactful
when using the cleaned data.

7 Additional Information

Mentors: Peng Qi (external) and Anand Dhoot

References
[1] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehension. CoRR,

abs/1710.10723, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[3] Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Güney, Volkan Cirik, and Kyunghyun Cho. Searchqa:
A new q&a dataset augmented with context from a search engine. CoRR, abs/1704.05179, 2017.

[4] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611. Association for
Computational Linguistics, 2017.

[5] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents, 2014.

[6] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392. Association for Computational Linguistics, 2016.

[7] Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions. CoRR,
abs/1803.06643, 2018.

[8] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Enabling efficient question answer retrieval via hyperbolic
neural networks. CoRR, abs/1707.07847, 2017.

[9] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop reading
comprehension across documents. CoRR, abs/1710.06481, 2017.

[10] Yi Yang, , and Chris Meek. Wikiqa: A challenge dataset for open-domain question answering. ACL -
Association for Computational Linguistics, September 2015.

[11] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018.

8

	Introduction
	Approach
	Document Embeddings
	Supervised Document Embeddings

	Related Work
	Question Answering Datasets
	Question Answering Models

	Experiments
	Data and evaluation methods
	Experiment Details
	Document Embedding Experiments
	Supervised Document Embedding Experiments
	Other Experiments

	Results

	Analysis
	Preprocessing
	Impact on modeling performance

	Supervised Document Embeddings

	Conclusion
	Additional Information

