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Abstract

Neuroradiologists spend a large portion of their time recommending an imaging
protocol based on a doctor’s patient description. In conjunction with the Stanford
Hospital, we compile a novel dataset and implement state of the art Deep Learning
NLP techniques to automatically make the protocol recommendation. We find
that a combination of FastText embeddings and a custom FastText model variant
provide great overall results. Our research indicates that this is the first time
someone has attempted to automate this task.

1 Introduction

Currently, when a doctor wants to request imaging studies after examining a patient, the examining
physician will fill out a form online. Here, the doctor describes the patient (age, gender) and includes
the reason for the study in the form of a patient description. A radiologist will then examine this
request, determine what the right protocol for the case is, and then schedule that procedure. This
entire process is time-consuming and most of the time, fairly straight-forward. The radiologist’s
expertise is only really needed on a handful of cases where the actual protocol to be run is not clear
based on the doctor’s description or the nuances of the case require an expert’s knowledge. We
seek to automate this process using Deep Learning Natural Language Processing techniques so that
radiologists’ can focus their attention on the cases that are really needed.

We found the best results by using our own modified version of the FastText model published by
Joulin et al.[2] which we call TongAl and using a novel document representation method described by
Dubois et al.[5] in conjunction with finetuned pretrained embeddings available online from FastText.

2 Related Work

To the best of our knowledge, this paper is the first one to target the specific task of classifying
requests into specific imaging protocols. This process is currently done by trained radiologists, and
probably hasn’t been able to capture much attention before. However, we based on approach on
existing text classification approaches, as well as methods to efficiently represent clinical text.

Much of our approach is based on FastText, which actually consists of two parts, one for word
embeddings and the other for efficient text classification.

The first FastText paper is by Bojanowski et al.[1] at Facebook research. Their model is basically the
skipgram model introduced by Mikolov et al.[3] but instead of treating words as atomic structures, it
treats words as bag of n-grams. For example, if we were using character 3-grams, the word "where"
would become the set "<wh", "whe", "her", "ere", "re>", where the tags "<" and ">" are appended
at the beginning and end of the word. Each of these 3-grams then has its own embedding, with the
embedding for "where" being the sum of these. This means the model can learn intra-word structures
to derive the meaning of words. This seemed specifically pertinent in the medical field, given the
importance of word roots in understanding word meaning (ex: the root *neur’ indicates something is
related to the brain).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



The second FastText paper is by Joulin et al. [2] and it introduces a couple tricks for efficient text
classification. This model averages the word embeddings in a document to create a representation of
a document that can then be passed through a neural network. The paper also suggests using word
n-grams to deal with the bag-of-words model’s invariance to word order. They pass this document
representation through a single linear layer and then calculate the probability distribution across
classes using heirarchical softmax. They use heirarchical softmax to increase efficiency when the
range of output classes is too large. They finally recommend using cross-entropy loss as the objective
function, which is the standard in text classification.

To represent the text part of the imaging requests we looked at two papers. The first by Wang et al.[4]
was a comprehensive review of different pre-trained embeddings for biomedical natural language
processing using both intrinsic and extrinsic evaluations. They conclude that while domain specific
embeddings help achieve greater accuracy in experiments, this difference isn’t significant. They
hypothesize that this is because the general pretrained embeddings are trained on much larger datasets,
which allows them to capture more information about the English language than the domain specific
embeddings that are trained on smaller datasets.

The second paper on text representation was by Dubois et al.[5] and it compared two methods of
representing free-form clinical text to allow for transfer learning. They train two models on a large
set of unlabelled data from the Stanford Hospital, and then apply these to a target task with a much
smaller dataset. They prove that their methods increase performance on target tasks. They investigate
two methods to represent clinical text. The first one is an embed-and-aggregate method. They develop
embeddings using a skipgram model. First, they embed all words in an input document. Then, they
create a representation of that document by creating three intermediate representations by taking the
mean, min, and max across the embedding dimensions and then concatenating this to create a final
representation. They use this fixed-length representation as the input for the target task. They also try
training an RNN to create document representations, to good effect. However, we were unable to
find the pretrained weights for this last trained models, so instead just use the embed-and-aggregate
approach described here.

Our approach was inspired by these papers, and will be described in the subsequent section. However,
we also experimented with variations of these approaches to get to the Tong Al model.

3 Approach

3.1 Naive Bayes

Our problem fits into the general NLP category of text classification. As a baseline step we decided
to first implement multinomial Naive Bayes classifier. Naive Bayes is a standard and often pretty
powerful text classification algorithm that computes the probability for each class based on an
application of bayes rule to the input:

p(Cr)p(z|Ck)

p(x)
Where « is the vector input and CY, is one of the k classes. The denominator is unimportant as we
are only interested in the comparison of probabilities between classes and it is the same for every

class. The numerator can be split up using a "naive" conditional independence assumption between
elements of z to arrive at the following overall formula:
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Where p(x;|Cy) is computed per word. We take the log of this quantity to prevent numerical
underflow and finally incorporate Laplace Smoothing for cases when a class and word did not appear
together in the training data. Finally, we multiply by the multinomial counts of a word in the input
sentence.

Naive Bayes can perform very strongly in text classification problems since often the combination of
word probabilities is enough to point to a specific class if there are certain highly relevant keywords.



Our input text also lacks the kind of structure that often confuses Naive Bayes (“not good” in
sentiment classification for example) and so we theorized that Naive Bayes may actually end up
performing state of the art. Fortunately, despite Naive Bayes performing very well as a baseline,
through methodical and extensive architecture exploration we were able to substantially improve on
1t.

3.2 CNN

Our first deep learning approach was to implement a simple CNN on top of our word embedding
layer motivated by Yoon Kim [6]. We padded the output of our word embedding layer with zeros to
arrive at a fixed size matrix of sentence length x embedding dim. We then used several 1-dimensional
filters of different sizes to capture n-gram representations and maxpooled their outputs. Finally we
passed the pooled output through a single dense layer. As this model did not produce better results
than Naive Bayes we did not pursue it more.

3.3 FastText

Our main approach was based on the model described by Joulin et al.[2] and the clinical text
respresentations described by Dubois et al.[5]. We choose the FastText approach because we noticed
that a lot imaging requests were fairly unstructured. Mostly, doctors would just note down an array
of symbols and ask for some kind of imaging. Since syntactic structure wasn’t that important and
instead a lot of the analysis could be done by just capturing some of the key words in each document,
it seemed that a simpler model could do well compared to more complex models that do capture
structure, like RNNs. This is also the reason we think Naive Bayes did so well. We also wanted a
model that was lightweight, and could run in any computer. Our goal was that this model could be
used in any hospital, and given the difficulty in training more complex models, we wanted something
that could be trained quickly on a cpu.

Our model first tokenizes each of the requests of imaging using spaCy, an industrial strength tokenizer
for the english language. We then generate bigrams based on these representations, which we
concatenate at the end of each sentence. Bigrams allow for some data localization information, which
is found to increase performance by Joulin et al.[2]

We then create embeddings for each of the terms from the previous step. We tried multiple different
embeddings, but ended up getting the best results using the 300 dimensional pre-trained weights from
FastText available through TorchText.

The FastText embeddings are trained using the unsupervised skipgram model with negative sampling
introduced by Mikolov et al. [3]. This model is inspired by the distributional hypothesis and attempts
predict words that appear in the context of a target word. To do achieve this, this model maximizes
the following equation

T
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where w, represents the context words around the target word w;. To define the probability p of a
word appearing in the context of each other, softmax is used, where a scoring function s is assumed
to be given:
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The only change to that Mikolov et al.[3] model is that a new score function is necessary to adapt to
the bag of n-grams scenario. The score function is:

s(w, c) = Z ngvC
9€Guw
where G, is a set containing the character n-grams in the target word, z, is the embedding for the
character n-gram g, and v, is the potential context word. This formula is taken from Bojanowski et al.

[1].



We also tried training out own embeddings using the skipgram model available at fasttext.cc, but
saw limited results. The embeddings we trained were 100-dimensional and had character 3 grams, 4
grams, and 5 grams and were trained on our train dataset. Our motivation for using custom-made
FastText embeddings was that after talking to Elizabeth Tong, our mentor, she mentioned that each
hospital uses a slightly different language around imaging procedures and therefore decided to try
the FastText method to make our own embeddings. We implemented an EmbeddingBag class based
on an implementation from FastText which converts a string of words to it’s corresponding set of
FastText embeddings given character n-gram embeddings.

We ended up abandoning this approach after finding that Glove-embeddings provided significantly
better results that our pre-trained embeddings even with a smaller neural network built on it. This is
in-line with the findings from Wang et al.[4], which conclude that using domain specific embeddings
provide limited but not significant results. We believe that our trained embeddings provided valuable
information about each of the medical terms, but lacked in terms of the quality of general English
terms. There are also benefits from having access to subword embeddings, since it allowed us to
create embeddings for unseen words (like mispelled words). However, because our model used an
EmbeddingBag based on a character n-gram model with around 2 million n-grams, the model didn’t
parallelize well and was extremely computationally intensive to train despite the relatively simple
neural network we built on top of it.

After getting embeddings for each of the words in our document, we represent it by concatenating
the mean, max, and min of all the embeddings in the document. Our original approach was based
on Joulin et al.[2] and consisted of calculating the average of all the embeddings (ignoring padding
elements). However, we decided to change our representation based on Dubois et al.[5]. Dubois
et al.[5] proposes the approach which consisted of taking the min, max, and mean of the word
embeddings for each document and then concatenating these 3 representation into a vector that was
3 times the embedding dimension. We also calculate mean differently than the traditional pytorch
mean function. This was done to ignore the paddings introduced to allow for batches of documents
to be calculated in parallel. Since each document had a different length, we had to adjust mean to
recognize that. In our case, since we ended up using 300 dimensional embeddings, our document
representation had 1200 dimension.

We concatenate into this 1200 dimensional vector the age and gender of the patient. The age is
bucketized an 11-dimensional vector one-hot vector, where each value represents a decade. Gender is
represented as a binary value. We decided to use age and gender because we found a difference in the
distribution of protocols across ages and genders. This is described more in depth in the data section
below.

Then, as described in Joulin et al.[2], we pass this 1212 dimensional representations through one
linear layer, and then calculate the log-softmax. When making predictions, we simply choose the
maximum from this distribution because log is a monotonically increasing function. We experimented
with different numbers of hidden layers, but found the best results from using only a single layer.

Finally, as out objective function we minimize negative log likelihood loss using the pytorch imple-
mentation. This loss is defined as follows:

C
L(y,y) = — Z JelYe
c=1

Where C is the total number of classes, which is 11 in our case. Note that the input g is the log of
the softmax output, so . meant to approximate log(p(X; = c)), the probability that the example ith
example equals any given class c. Therefore, our loss function is equivalent to cross-entropy loss,
which is meant to maximize the probability of the right output class in a softmax output.

4 Experiments

4.1 Data

In conjunction with the Stanford Hospital we created a novel dataset from electronic medical records
over the past ten years. Medical data is often very hard to come by and so we were thankful for Dr.



Tong’s help in communicating with the hospital IT department to acquire the initial data file. Imaging
study recommendation can be seen as two different classification tasks. The first task is to determine
the region that needs to be imaged: Brain, Head Neck, L-Spine, C-Spine, etc. And the second task is
given that region to determine the specific protocol to use. After discussing with Dr. Tong we decided
to focus on classifying a particular region and settled on pursuing the Brain imaging studies first. The
methods we develop can in the future be scaled up across different regions.

The dataset contains the anonymized patient id, reason for imaging as well as the patient’s age and
sex (our inputs), and the neurologist’s protocol recommendation (our target output). Medical data
can often be noisy and inconsistent. We discovered that the dataset contained many entries unrelated
to our task (contrasting agent recommendations for example) where a protocol should have been
entered. It seems that the hospital changed their internal record keeping structure recently leading
to this confusion. We removed the problematic entries and then further preprocessed the data to
remove duplicates and entries that were missing protocol recommendations or patient descriptions.
From the original 261,585 classes we were left with just 13,075 well formatted data entries for the
Brain protocol recommendations task. Dr. Tong also determined that there seems to be a labelling
around 10% of cases, which caps the achievable performance. Although our final dataset was not
balanced between the 11 Brain protocol classes, we decided it was not unbalanced enough to prevent
our models from learning well.

We randomly shuffled and split our dataset with an 80 / 20 dev/test split to maximize our already
constrained training data size.
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Figure 1: Overall dataset distribution
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Figure 2: Gender distribution over classes

Table 1: Data examples

Age Gender Reason for imaging Protocol
86.0 f progressive dementia routine brain
49.0 f 49 yo female with h/o pituitary mass. sella

69.0 f surgical planning. please include tl and t2 with fiducials.  stereo/cyberknife
69.0 m lung mass evaluate for metastatic disease mets

47.0 m follow up for ms multiple sclerosis




Class \ Age (Decade) Matrix Normalized by Columns

mets 0.041 0.058 0.12

memory 0.0058 0.0058 0.014 0.015 ] ! ! L o.75
multiple sclerosis 0.17 0.16 0.19 0.16

epilepsy 0.2 ©.13 E - 0.60
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routine brain - 0. . b 0.14 0.12 b b 0.45

Classes
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0.30
tumor brain . . 0.2 . 0.22 0.2 0.16 0.14

complex headache 0.035 0.014 0.0084 0.0089 0.0035

0.15
brain trauma 5 A 0.019 0.0082 0.0084 0.0027 0.0035

stroke 0.0087 0.012 0.013 0.018 0.019
0.00

Figure 3: Class versus age in decades normalized by age. Shows how age helps determine class.

4.2 Evaluation Metric

Accuracy is the standard logical choice for evaluating a classification metric. It is defined as the
percent of examples classified correctly. Although this can often be problematic in unbalanced
datasets, we determined that our dataset was not dominated by any one class enough that accuracy
reports would be misleading. We utilized both overall accuracy for rapid model iteration as well as
per class accuracy for error analysis. In addition, since we are hoping to use our algorithm to assist
doctors rather than outright replace them, we realized that what we really wanted to focus on was
high recall. We want our model to retrieve a large portion of the relevant documents because we
may in the future show the doctor a couple possible options and let them choose the correct one so
we would like the relevant document to be in the options. Recall is defined as the percentage of a
class correctly retrieved. We also looked at precision for interest as well as F-score as an average of
precision and recall. For precision, recall, and F-score we first calculated the per class values and
then averaged them over the classes by weighting by the number of true occurrences of each class
to arrive at a more holistic metric over our class imbalance. Due to our large class number we also
visualized confusion matrices to better understand during error analysis our model’s mistakes.

4.3 Experimental Details

We first wanted to examine how well random guessing would perform on our unbalanced dataset. We
built a class distribution from our training data and then sampled according to that distribution during
test time. We next examined how useful just the age and just the gender were by building simple
feedforward two dense layer neural networks.

We ran Naive Bayes to achieve a preliminary baseline and gauge where the difficulties would lie with
our dataset. For all approaches, we tokenized our sentences to get separate word terms. For Naive
Bayes we experimented with a simple multinomial vector of counts as well as tf-idf weights. For our
following deep learning approaches we experimented with a variety of embeddings from training our
own using the FastText approach to downloading pretrained GloVe and FastText ones and finetuning.
We found the best approach to be a combination of pretrained FastText 300d embeddings with further
finetuning during the training process.

Our initial Deep Learning approach was to use a Inception-like one layer CNN with filter sizes of
1, 2, and 3. We used 100 filters for each size and then passed the output through a ReLU activation
followed by a 1D max pool operation, finally we passed it through a dropout layer (p = 0.5) and a
densely connected layer and took the log softmax. We early stopped the model after 6 iterations.

For our final FastText variant model we experimented with many different configurations and
architectures. We found that generally we were dealing with a variance problem as our model



was perfectly capable of overfitting given enough epochs. To combat this our main resource was
early stopping. We also experimented with adding Dropout before the dense layers and adding L2
regularization with different values for lambda. We extensively searched for ways to lower our
variance, but due to the inefficacy of common variance-reduction methods and the large extent of
our architecture search we came to believe that our validation results were approaching an upper
bound determined by the size of our dataset. We experimented with adding more dense layers, trying
5 /20 /100 for hidden layer sizes, training dense hidden layers for the age and gender separately
before concatenating, and different ways of performing the pooling operation. We also experimented
with stopping word embedding fine-tunning after 6 epochs to minimize the amount of overfitting in
combination with adding more hidden layers to the model to try and eek out more meaning.

We trained all of our deep approaches using an Adam Optimizer with learning rate equal to 3e-3 and
betas of 0.9 and 0.999. We tuned the learning rate to achieve faster convergence but since our main
FastText model trained quite quickly (a minute or so, roughly 5 epochs) it was not a great concern.

4.4 Results

Table 2: Results

Model | Accuracy Precision Recall F-Score
Random 15.45% 0.170 0.155  0.155
Age 31.79% 0.195 0.318  0.229
Gender 28.35% 0.089 0.284  0.134
Naive Bayes 76.73% 0.777 0.767 0.760
CNN 64.20% 0.642 0.639  0.633
Vanilla FastText | 78.60% 0.790 0.786  0.778
TongAl 82.06 % 0.829 0.821  0.816

The impressiveness of our TongAl results surprised us. Not only were we able to achieve pretty
impressive accuracy and recall, but we also significantly improved upon Naive Bayes through our
extensive architecture and hyperparameter search. The common denominator we saw across our
models was that given enough epochs a model would overfit to the training word distribution because
of our dataset’s small size.

For our suggested use case these results are more than enough, especially given the high recall and
the error intrinsic in the dataset.

S Analysis

As the confusion matrix in Figure 4. shows our model performs pretty well across the large classes
but less well with the three smallest classes ’complex headache’, ’brain trauma’, and ’stroke’.
Interestingly all three of these are misclassified to the *'multiple sclerosis’ protocol. Without greater
medical knowledge it is hard to say why *multiple sclerosis’ is the predicted target and analysis of the
misclassified data examples didn’t provide any hints.

As the random model results and confusion matrix show our dataset imbalance did not lead to
misleading accuracy. Our TongAl model was able to learn pretty well across the classes it had enough
data for and did not just predict the most common class.

Our results for the larger classes are even more impressive given that Dr. Tong identified a roughly
10% error in her analysis of the original dataset. While this was a rough estimation, it does nicely
frame the significance of our model’s results.

6 Conclusions

In this work, we propose a model to recommend the imaging protocols given doctors’ requests as
well as basic patient information. We developed a novel labelled dataset for this task and will look at
releasing it pending we get permission from the Stanford hospital. We develop a model that achieves



Normalized confusion matrix
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Figure 4: TongAl confusion matrix.

significantly better results than the baseline model and an overall high level of accuracy considering
the level of error in the data. The model that achieved these results was relatively simple compared
to model architectures that have become predominant in the text classification domain because this
model drew most of its predictive accuracy from word features and efficient document representation
techniques.

Our work was limited by the amount of data available and the data imbalances across classes.
Although we had access to a very large dataset, only a small amount was usable. Future work would
be mostly focused on creating a larger and more uniform dataset. This would require more time
and support from medical professionals at the Stanford Hospital to be able to understand and parse
through the larger dataset, which requires a greater understand of the protocol system at the hospital
than we have. After having developed this larger dataset, we could move into classifying across the
different regions, as well as making contrast recommendations.
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