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Abstract

“Translationese” refers to the unique structural characteristics of translated text
compared to text originally written in a given language, a result of compromises
made by translators between fidelity and fluency in source and target languages.
We examine the effect of translationese on machine translation in three contexts—a
phrase-based statistical system, a neural model, and an unsupervised phrase-based
system—in translations from a variety of languages to English. We find that
regardless of language and system, models trained on target corpora translated from
the source language outperform models trained on original target-language corpora,
with especially strong improvements in the case of a low-resource language.

1 Introduction

Translation theory has long held that texts in translation exhibit significant structural differences
from untranslated texts, a phenomenon termed “translationese.” These differences result from the
translator’s attempt to produce a work that reads fluently in the target language while still maintaining
fidelity to the source text’s style and substance. Because of this attempt at compromise, translated
texts are affected by the source language itself—its grammar and norms, beyond the style of the
author—in what is termed the law of interference, as well as by the target language’s own norms, in
the law of growing standardization (13).

With the rise of statistical machine translation (SMT) based on large text corpora, translation theory
has been generally overlooked in favor of work on data collection, feature engineering, and model
architectures. Recent years, however, have seen a rise in studies of translationese. Research (see
Section 2) has shown that translations can be automatically distinguished from original-language texts
with high accuracy (15) (11), and that language models trained on translations perform significantly
better than language models trained on original-language texts in machine translation systems (9).
These results suggest that the translation status of a text and the directionality of translation are
important features to consider when compiling training and test corpora, yet they are largely ignored
in benchmark corpora like Gigaword, News Crawl, and bilingual Europarl.

In this project, we compare translation performance between models trained on translated text
and models trained on original-language text in three contexts: supervised phrase-based statistical
translation, supervised neural translation, and unsupervised (monolingual) phrase-based statistical
translation. We test on translation from five languages into English and find that across the three tasks,
models trained on translated texts consistently perform better, even when trained on corpora smaller
by up to an order of magnitude. Based on these results, we conclude that translation directionality
significantly influences translation quality, and we discuss some potential practical implications,
focusing on the case of low-resource languages.

2 Related work

(13) first defined the laws of interference and growing standardization, in which a translation exhibits
signs of the source text’s style and the source language’s grammar as well as the attempt of the



translator to conform the text to the target language’s norms and culture. (1) proposed several
“translation universals,” traits that appear in all translations, regardless of source and target languages.
These include simplification, the tendency of translators to use simpler language (e.g. smaller or more
frequent words) when describing complex concepts, and explicitation, in which translators tend to
make explicit in the translation concepts that are implicit in the source text.

(4) and (11) find that translated texts can be automatically distinguished from original-language texts
using supervised (4) and unsupervised (11) machine learning methods. (7) use machine learning to
classify translations and also identify the source language given a translated text, and find that the
degree of difference between translated texts is directly related to the degree of typological difference
between the source languages, i.e. that translations from closely related source languages are more
similar to each other than translations from distant source languages.

(15) examines 32 features of translationese in the context of the theories detailed above and compare
their utility in automatically classifying texts as original-language or translated. They find that lexical
variety, word rank (commonness), and features that capture source language structure like part-of-
speech n-grams and positional token frequency are good indicators of translationese, while sentence
length and explicitation features like naming are not. They also find that certain features perform
well for only specific languages. For example, original-English texts have a much higher count of
sentences beginning with “But” than English translations, likely owing to translators’ adherence to
the English “rule” discouraging “But” sentences in formal writing.

(9) compare the quality of language models trained on translated and original-language English texts
and measure the effect of these models on phrase-based SMT systems, finding that translation-based
language models more closely match reference translations and perform better in translation contexts.
They find that while models trained on text translated from the source language of the task perform
best, even texts translated from a mixture of other languages produce models that outperform those
trained on original target-language text. They also perform an “ablation study” in which training
corpora are progressively stripped of features like punctuation and named entities and eventually
abstracted into part-of-speech syntax and find that results hold, confirming that translationese is a
result of deep structural language features. In this project, we repeat a subset of their experiments for
our phrase-based translation task.

(12) examine a prior study of Chinese-to-English neural machine translation and find that testing
on English-to-Chinese corpora—that is, parallel corpora in which the Chinese text is the result of
translation from original English—increases BLEU scores in the Chinese-to-English task while
producing substandard translations in human evaluation. They observe that neural translation systems
are sensitive to translationese, in this case unintentionally taking advantage of native-English features
in the test Chinese text, and conclude that machine translation systems should be tested on corpora
translated in the same direction as the given task.

For our unsupervised translation task, we refer to (8), a recent paper that produced state-of-the-art
results in neural and phrase-based unsupervised translation. They introduce neural and phrase-based
systems unsupervised systems based on three techniques: initialization from dictionaries inferred
from monolingual corpora, language modeling (as a denoiser in the neural case), and iterative
backtranslation between monolingual corpora. They outperform the previous state of the art across
several languages by up to 10 BLEU points and demonstrate the effectiveness of their system on low-
resource languages. In this project, we use their phrase-based translation system for our unsupervised
task.

3 Approach

3.1 Phrase-based system

In statistical machine translation, to find the best translation t given a source sentence s, we maximize

p(t|s) ∝ p(s|t)p(t) (1)

where p(s|t) is determined by the translation model and p(t) is determined by the target language
model. We use a standard phrase-based SMT setup in which the translation probability p(s|t) is read
from a phrase table of matching source and target training phrases and the target language probability
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p(t) is determined by an n-gram language model. We train our SMT system using the Moses (6)
toolkit’s baseline translation model, which is a 3-gram language model with modified Kneser-Ney
smoothing and a translation model using standard alignment factors and lexical reordering. As in
(9), to examine the effect of the language model alone on translation, we compare systems with
language models trained on original text with those with language models trained on translated text
but maintain the same translation model, trained on bidirectional corpora, across both systems.

3.2 Neural system

For our neural system, we use the same architecture as in Assignment 4 for this class, which is a
single-layer sequence-to-sequence model with attention, using a bidirectional LSTM encoder and a
unidirectional LSTM decoder. We use multiplicative attention and pass the output through one linear
layer with tanh activation and dropout, and compute softmax cross-entropy loss. Because this is an
end-to-end translation system, unlike in the phrase-based system, we are unable to isolate the effect
of the language model; experiments on the neural model thus measure the effect of translated and
original-language text on the system as a whole.

3.3 Unsupervised task

We use the unsupervised phrase-based SMT implementation from (8) for this task; experiments with
their unsupervised neural system were computationally infeasible in the scope of this project. Given
source and target monolingual corpora, we use separate word embeddings for each corpus and align
these embeddings, resulting in a rotation matrix W between the source and target embedding spaces.
We can then populate source-to-target phrase tables as follows:

p(tj |si) =
e

1
T cos(e(tj),We(si))∑

k

e
1
T cos(e(tk),We(si))

(2)

where si and tj are the ith and jth words, respectively, in the source and target vocabularies, cos
is cosine similarity, T is a hyperparameter on the phrase probability distributions, and e(x) is the
embedding of a word x.

Using this dictionary and an n-gram language model for the target language—we use a 5-gram
modified Kneser-Ney model—we can then bootstrap an initial source-to-target translation model. We
then iteratively backtranslate the source and target corpora as in Algorithm 1.

Algorithm 1: Unsupervised phrase-based SMT
Generate fastText embeddings for S and T ;
Initialize phrase table by aligning embeddings;
Learn language model LMt for T ;
Build forward model P (0)

s→t from phrase table and LMt;
Translate source corpus Cs with P

(0)
s→t, giving C

(0)
t ;

for iteration=1 to N do
Train backward model P (i)

t→s using Cs and C
(i−1)
t ;

Translate target corpus Ct with P
(i)
t→s, giving C

(i)
s ;

Train forward model P (i)
s→t using C

(i)
s and and Ct;

Translate Cs with P
(i)
s→t, giving C

(i)
t ;

end
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4 Methods

4.1 Dataset

We use version 7 (most recent public release) of the Europarl dataset (5), which contains transcripts
of European Parliament proceedings from 1996 to 2011 (2007 to 2011 for certain languages). We use
the full set of Europarl data for translations between five languages—French, German, Italian, Dutch,
and Romanian—and English; note that Romanian-language data is only available from 2007 to 2011.

Because Europarl’s bilingual subcorpora do not specify the original language of each utterance, we
extract unidirectional subcorpora between source and target language pairs using the EuroparlExtract
(14) toolkit, which assigns utterances to a source language based on the language tags and speaker
IDs in the raw Europarl data. We then hold out a test set (Oct.–Dec. 2000; Nov.–Dec. 2009 for
Romanian) and a development set (May–Jul. 2005; Nov.–Dec. 2010 for Romanian) for tuning and
evaluation.

4.1.1 Phrase-based system

For the phrase-based SMT case, the rest of the data is used to train the language model, and a smaller
subset (1999, Jan.–Sep. 2000, 2004, and 2011; all data for Romanian) is used to train the translation
model. Since we distinguish between language models trained on original-language corpora and
translated corpora, we train target language models on exclusively original (O-L) or translated (T-
L) data, and to isolate these effects from the translation model, as in (9), we train the translation
model on a a concatenated corpus of approximately equal numbers of sentences translated in each
direction. For example, in French-to-English translation, our T-L system would have a language
model trained on English translated from French, our O-L system would have a language model
trained on original-English sentences, and both would have a translation model trained on a parallel
set of both French-to-English and English-to-French sentences.

4.1.2 Neural system

The neural models are trained on the same segments of data as the phrase-based language models.
In French-to-English translation, our T-L neural model would be trained on a parallel corpus of
original-French sentences and their English translations, and our O-L model would be trained on a
parallel corpus of original-English sentences and their French translations.

4.1.3 Unsupervised task

For unsupervised translation, we split the data by alternating years into two non-overlapping mono-
lingual corpora, with M-A containing all data from even years (less the test set) and M-B containing
all data from odd years (less the dev set). We arbitrarily select M-A as the default “source” corpus,
and focus on the effects of the translation status of the target-language corpus. In French-to-English
unsupervised translation, our T-L model would be trained on original French sentences from M-A
and unrelated English sentences translated from French in M-B, and our O-L model would be trained
on original French sentences from M-A and original English sentences from M-B. Our corpora are
smaller by about an order of magnitude than the standard sets used for monolingual translation, but
those datasets do not indicate directionality of translation.

All testing is done on parallel corpora in the direction of the translation task; i.e. in French-to-English,
the test set consists of original French sentences and their English translations.

Statistics for each corpus by language are given in Table 1. Note that the original-English corpora for
each of the first four languages are roughly the same (i.e. all English utterances in Parliament in the
specified years); we specify statistics for the original-English corpora in the Romanian-to-English
task because of the shorter date range of the dataset.

4.2 Evaluation

We use BLEU scores for evaluation. Evaluation during development is performed on the tuning set,
and evaluation of final models (for all reported results below) is performed on the test set.
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Table 1: Corpus statistics (sentence count)

Corpus fr-en de-en it-en nl-en ro-en

Parallel 133336 143496 101475 115922 94728
T-L LM 199402 233657 83654 120938 12530
O-L LM* 371374 - - - 82198
Mono 111469 121771 40180 64258 6020
Mono T-L en 109032 133891 48922 68165 8786
Mono O-L en* 200240 - - - 65289
Tuning/Dev 4648 3579 1443 1685 1553
Test 9438 7808 2305 4758 723

4.3 Experiments

All experiments were run on two standard NV6 machines on Microsoft Azure, each with 6 vCPUs,
80GB memory, and an NVIDIA Tesla M60 GPU.

4.3.1 Phrase-based system

We use Moses scripts to tokenize and truecase all corpora (including tuning and test sets), then, for
each translation task, train two 3-gram language models using KenLM (included with Moses): one
on original English text, and one on English text translated from the source language. We then train
the Moses baseline translation model with the grow-diag-final-and alignment algorithm and
the msd-bidirectional-fe lexical reordering model; these are also the options used in the WMT
baselines.

4.3.2 Neural system

We reused code from Assignment 4 for this system; the model was written in PyTorch, with BLEU
scores calculated with ntlk. All corpora were again tokenized and truecased with Moses before
training. All models ran until the early stop criterion was met (usually around 15 epochs), with the
exception of the Italian-to-English and Dutch-to-English original-English models, which both ran
into memory issues around epoch 6.

4.3.3 Unsupervised task

We used (8)’s implementation of the unsupervised system. All corpora were tokenized and truecased
with Moses; note that while (8) requires that the two monolingual corpora be the same length, we do
not enforce this due to the already-small size of our corpora. We use pretrained fastText embeddings
for all languages and align those embeddings with MUSE (3). Each 5-gram language model is trained
with KenLM, and the translation systems are trained with Moses using the same alignment and lexical
reordering as in the phrase-based SMT task. We run each translation task for three iterations of
backtranslation.

4.4 Results

Results for each task are shown in Tables 2, 3, 4, and 5. For both the phrase-based and neural
translation tasks, models trained on English text translated from the source language consistently
outperform models trained on original-English text across all five languages tested, with the exception
of the Romanian-to-English neural translation. This discrepancy might be due to corpus size effects
on the neural model; given the small T-L corpus (nearly seven times smaller than the next-smallest
corpus), the T-L neural model could be overfitting to the training data.

We can see, however, that in all other cases, the T-L model performs significantly better than the
O-L model, as expected. Improvements range from 0.73 to 3.34 BLEU points with the phrase-based
model and from 1.01 to 4.43 BLEU points with the neural model. These improvements occur despite
the fact that the O-L English training corpora are significantly larger (from 85% to over 300% larger
across the first four languages, and nearly seven times larger in the case of Romanian) than the T-L
corpora.
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Table 2: BLEU scores, phrase-based statistical model

Task Model BLEU

fr→en T-L LM 32.23
O-L LM 31.37

de→en T-L LM 24.93
O-L LM 24.20

it→en T-L LM 28.32
O-L LM 27.51

nl→en T-L LM 29.47
O-L LM 28.49

ro→en T-L LM 38.61
O-L LM 35.27

Table 3: BLEU scores, sequence-to-sequence neural model

Task Model BLEU

fr→en T-L 33.15
O-L 28.72

de→en T-L 26.85
O-L 24.15

it→en T-L 27.78
O-L 25.07*

nl→en T-L 29.42
O-L 25.60*

ro→en T-L 31.81
O-L 32.80

Also in line with previous work, we find that the neural models generally outperform their corre-
sponding phrase-based models for languages like French and German with large datasets, but that the
phrase-based models perform better for low-resource languages like Romanian.

Tables 4 and 5 contain BLEU scores on the test set (only output to measure model quality, not used
to adjust model parameters) for each stage of backtranslation, with the best final scores bolded for
each task. We can see that the effects of translationese persist even in the case of unsupervised
translation: the T-L models perform better across the board, with improvements of 0.90 to 7.55
BLEU points. Note that even the backtranslation models perform slightly better in the T-L case than
the O-L case when tested on the backwards test corpus. As with the phrase-based and neural tasks,
this improvement occurs despite a significant corpus size difference between the T-L and O-L target
English corpora.

5 Analysis

As expected, the T-L models outperform the O-L models consistently across all tasks and all transla-
tion systems. Based on the scores observed, we make a few general observations.

In both phrase-based translation experiments (supervised and unsupervised), the difference in BLEU
score between T-L and O-L models is generally larger for language tasks with smaller corpora. In
the supervised case, for example, we see a much larger improvement in Romanian (3.34 BLEU
points) than in French or German (about 1 BLEU point). We see an even greater improvement in the
unsupervised case, where the Romanian T-L model performs over 7 BLEU points better than the O-L
model, while the French and German models see improvements of 1-2 BLEU points. This could be
due to the small size of the Romanian corpora, or the scores could be affected by the large difference
in size between the Romanian O-L and T-L corpora; more work is needed here.
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Table 4: BLEU scores, unsupervised PBSMT, T-L

en-fr fr-en en-de de-en en-it it-en en-nl nl-en en-ro ro-en

UPT - 11.21 - 8.05 - 9.33 - 12.74 - 14.34
Iter. 1 14.33 18.36 6.88 11.22 9.57 15.22 11.92 15.19 5.76 17.68
Iter. 2 17.48 19.69 9.09 12.70 12.32 16.68 12.81 15.72 7.87 20.81
Iter. 3 17.98 19.63 9.57 12.90 12.59 16.70 12.88 16.05 8.70 21.84

Table 5: BLEU scores, unsupervised PBSMT, O-L

en-fr fr-en en-de de-en en-it it-en en-nl nl-en en-ro ro-en

UPT - 10.77 - 7.91 - 8.96 - 12.47 - 7.01
Iter. 1 14.05 16.92 6.82 10.58 9.46 14.29 12.08 14.28 5.46 9.26
Iter. 2 17.21 17.81 8.79 11.70 12.15 14.83 12.69 14.79 6.90 11.58
Iter. 3 17.20 17.41 9.26 12.00 12.38 14.92 12.98 14.85 7.86 14.29

If translationese-based models can be shown to significantly outperform original-language models in
the case of low-resource languages regardless of source language, there are some significant potential
practical implications. In general, there is an inverse relationship between the amount of text published
in a language and the rate of translations into that language (10); i.e. the number of original-English
texts vastly outnumbers the number of texts translated into English, but in lower-resource languages
like Romanian, there are potentially many more translations into Romanian than original-Romanian
texts. This poses challenges for translation out of low-resource languages. However, if there are
qualities of translationese that can be shown to improve translation regardless of source language,
then translated texts from related source languages to the same target language could be used to
bolster performance.

In the three systems studied here, the structure of each imposes different constraints on the influence
of the target-language corpus over the system’s learned translation probabilities, but the improvements
in BLEU score of T-L models over O-L models doesn’t seem significantly different between systems.
In the supervised phrase-based model, we intentionally train the translation model on a balanced
bidirectional parallel corpus and only change the training of the language model between T-L and O-L
models, while in the neural and unsupervised models, the target-language corpus directly influences
the learned translation probabilities. Yet we still see significant improvement in T-L models in the
supervised phrase-based systems, suggesting that the choice of target-language corpus has the most
impact in the language modeling aspect of translation. In neural translation, language models can
be used as denoisers in the decoding stage as in (8); future work could investigate if a T-L language
model added at this stage could further improve translation quality.

Note that in general, our results are not comparable with (9), (8), or other prior work given the
datasets used; we expect our BLEU scores to generally be lower due to the comparatively small
corpora used here. Because standard benchmark datasets (like those put up by WMT) do not indicate
translation direction, most work dealing with translationese also cannot be compared against other
prior papers; given that translationese has a clear effect on translation quality, this should indicate a
need for more labeling of translation direction in standard corpora.

6 Conclusions

We examine the effects of translationese on three machine translation systems: supervised phrase-
based SMT, neural translation, and unsupervised phrase-based SMT. We test translation of five
languages of varying resource levels into English and find that models trained on translated text
almost always outperform models trained on original target-language text, regardless of language,
system, and resource level, with significant potential implications for translation out of low-resource
languages. However, our results are difficult to compare to existing work in the field due to the lack
of corpora with labeled translation direction. Further research into and better understanding of the
effects of translationese, with better-labeled corpora, is needed to continue advancing the state of
machine translation.

7



7 Additional info

Project mentor: Michael Hahn
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